DrDialog Reference

DrDialog Reference
Table of Contents

Introduction 1
Asking for help. 3
Editing a dialog 5
(O00) 11700 11>y B e10) 115 40) NSRRI 5
T aDDING OTARE ..ttt ettt ettt e bt e bt et et e et e e bt e bt e bt e bt e bt enbe e bt e bt e bt e be e beenbeenne 6
SEIECHNZ COMITOLS 1.t uteeuteeutt ettt ettt ettt ettt et et e e et e ateeateeabeeateeabeeabeemteeaeeeateeaeeeabeembeemeeeaeeenteenteeabeentes 6
IMOVIIIE COMITOLS. - uteeute et et ettt et ettt et et et e bt e bt e et e bt e bt ea bt em b e eabeenteeabeeabeembeeabeenbeenbeenbeenbeenbeenbeenseenbeenne 7
Moving controls betWeen dialO@s.eurueeriieriieiieieeie ettt ettt ettt b ettt ettt e bt b e bt et ebeenee e 8
CODYIINE COMITOLS - -teuteeutteute et ettt et et e bt e bt e bt e bt e bt eaeeeabe e bt ea bt embeeabeeneeeabeeabeem bt eabeenbeenbeenbeenbeenbeenbeenseenseenne 8
Copying controls betWeen dIalOgs.eeueerueeriieiieieee ettt ettt ettt ettt et e bt e bt e sbeesbeesbe e beebeenbeenbeenee 8
SHZINE COMITOLS -t euteeuteeaie ettt ettt ettt ettt et e ateeateeateeabeeateeateeabeeateeabeeabeemteeaeeemteeaeeeabeembeemeeeateeneeenteeaseentes 9
Editing a control's Style iNfOIMATION. ... ceoveeteeteeteeteete ettt ettt ettt ettt ettt e be e bt e bt e b e e bt enbeebeenbeenee 9
Editing a control's REXX COAE. .. ccutiiiiiiiiieiteie ettt ettt ettt ettt ettt et et e be b e beebeebeenbeenee 9
Editing a control's attributes using the POP-UP MENUL.......eeueeiieitieiieieeie ettt ettt eee e 10
KeVDOArd SHOTECULS.e ettt ettt ettt et e et e et esat e e at e saeesateeateeabesatesatesatesanesaeeaas 11
Tools window: 15
0 T0) IR TA T 116 Lo 1 RN 15
HEID T00L. ettt ettt ettt ettt ettt e bt e s bt e s a bt e ea bt e s bt s ba e e bt e e nbbeesabeesabeesabeeebaeebas 15
PN oY 10 12 10T) SRR 15
YA oA 10 Yo) RN 16
(€ 5210 38 70T IR SRR 17
Dialog 10Ad LOOL. ... ittt ettt et et et ettt ettt et e bt e bt e et et e e bt e be e beenbeenteentean 17
DAl SAVE LOOL....c.ueeeutieiteeite ettt ettt ettt ettt ettt ettt et e et e e bt e bt e bt et e et e enteebeeabeenbeenteentean 18
SEOD EOOL -+t euvteeitteeitee ettt ettt ettt et e bt e e s bt e e s bt e e sb bt e sabeesabe e e be e e bt e e bt e e eab e e sab e e s beeeabeeebaeenbaeesabeens 18
(@00 115 00) IR A 1 176 (01 /AR 19
(000115 00) IR A 1 116 (01 /AR 19
GIOUD WIIIAOW ...ttt ettt ettt ettt et e et eate e bt eabeeabeem b e eateeateeabeeabeembeemeeembeenteenbeembeembeaneeensean 19
GIOUD WIIAOW. ...t eute ettt ettt et ettt ettt ettt et et e et e at e eateeabeeabe e bt emteemeeenteenbeembeenbeanseentean 20

Left align COMEIOLS . eeuteeuteeuteete et ettt ettt ettt et et ettt et e e et e et e eabe e bt emteemteenteenbeembeenbeenneennean 20

BOttom align COMIOLS .. uvi ettt ettt et ettt ettt ettt et et e e e eateebeeabeembeenaeeneean 21

Right align COMEIOIS . .ueutieutieiieeite ettt ettt et et ettt et e e et e e e bt et e et e eateebeembeembeenaeeneean 22

TOP AliGN COMITOLS. ... uteateeite ettt ettt ettt et et et e et et e eateeateebeembeenbeenteeneean 23
Horizontally CeNter COMEIOIS . .. couutiitiiiriieiieie ettt ettt ettt et et ettt et e eateeateeateebeeabeeabeenaeeanean 24
Vertically COnter CONTIOLS ... eeuutittiitettete ettt ettt ettt ettt et e et e bt et et eateeateebeeabeeabeenaeeneean 25
Horizontally SPACE COMITOLS .. uttutteuiteieetieiteie ettt ettt ettt ettt ettt et et eateeateebeeabeeabeenteeneeas 27
Vertically SPACE COMEIOIS .. .uieuueiutieieeieete ettt ettt ettt ettt ettt et e bt et eeaeeeabeebeembeembeenteeneean 28

Equal Width COMEIOLS. .. cuuiuiiiiiiie ettt ettt ettt ettt et et et beeteeaeean 30

Equal DeIgNt COMIIOLS. . uveeutieuiieieeie ettt ettt ettt ettt ettt ettt et e be e beeabeenaeeneean 31

SAME SEYIE COMITOLS 1..veuttuiteiie ettt ettt ettt ettt st e st e st e eat e e it e s it e sateeateeateeaeesmeesaeesatesaeeas 33

& ETa ISl ofe) 115 o) K-SRt 34

N s To N eT) 11 (e K PO 34

| DL (T (o0 116 xe) K- PR URURTTRT 34

N4 1116 [1. AR RRRRRRRRNE 34
N4 1116 [1. AR RRRRRRRRNE 35
ID WIIAOW.eeeeeeeeeiieieieee e e ettt ettt e e e e et eeeeeeabaaeeeeeseeaasaaeeeeesseasaaaeeeesssansaaeaseeeeesannreaeeeeessannraaeereessans 35
ID WIIAOW.eeeeeeeeeiieieieee e e ettt ettt e e e e et eeeeeeabaaeeeeeseeaasaaeeeeesseasaaaeeeesssansaaeaseeeeesannreaeeeeessannraaeereessans 35
AT T4 1116 [X AT 36

DrDialog Reference
Table of Contents

Tools window

JANFET 0TI 1116 [X AR 36

SRR A 16 [0 O SRRRN 37

AR A 16 (0 AP RRRRN 37

(@00) [0 a4 116 Lo 1 AR 38

(@00) [0 a4 116 Lo 1 AR RRRN 38

D R 1116 [0 X AR 39

D R 1116 [0 X AP SRRRN 39
Drop-down MENU WIIAOW. ...cc.eeetieiieieeieeie ettt ettt ettt ettt et e eteeabeeabeeabeeabeeaeeenteenteenbeenbeenbeeneeeneean 40
Drop-down MENU WINAOW.c..eetieiieiieie ettt ettt ettt ettt et ettt e teeabeeabeeabeeabeeabeenteenteenbeenbeenbeeneeeneean 40
RUN-UIIE WINAOW, . 1vvvveeeieiiiiieeeee et ee e e eeeee et e e e e e et et e e e e eesaaaeeeeessesssaaaeeeesssesssseeseeesssassseeeesessasnsanneeeessnnns 42
RUN-UIME WINAOW, . 1vvvveeeieiiiiieiieee ettt e e eeeee et e e e e e et ee e e e e e e esaaaeeeeesseessasaeeeesssassaseeseeesssasrseeeesessasnsaaseeeessanns 43

Dialog SEIECE WANAOW,...c.uveeueeeuteeuieete ettt et ettt ettt et eate e beeabeeabeeabeeateeateeabeembeeabeameeenbeeneeembeembeenseeneeensean 44

Dialog SEIECE WANAOW,...c..veeueeeueeeuieete ettt et et ettt et eateeate e bt eabeeabeeabeeaeeeateeabeeabeeabeameeembeenteenseenbeenseaneeeneean 44
Background window 45
Managing vour DrDialog workspace 47
Invoking DrDialog 49
DrDialog and the Workplace Shell 51
RESEOPEINL ...ttt et ettt ettt et e bt et e b e e ateeat e eabeeabeeabeemeeenbeenteenbeenbeenbeenteentean 51
RESEOEXE. ... oiiiiiieiiie ettt ettt ettt e ettt e ettt e e ettt e e e ate e e s esta e e e saaaeeesastasesemaassesaatseesasaaseesasaesesansaeessraeeesns 52
DrRexx 53
TS B0 NS 0.0 116171 010 10) PPN 53

EVEILS SECHIOM. cuuvvvvieeeeiiittieeee e e eeettee et e e e e eete et e e e e e esaaaeeeeeesesaaaeeeeesseassaaeeseesesassasaseeessssannseeeeeeessnnnnenes 53

EVEILS SECHIOM. cuuvvvvieeeeiiiteiieee e e eeettte et e e e e eeate et e e e e eesaaaeeeeeeeessaaeeeeeeseassaaeeseesssassaseseeeesssansreeeseeessnnnnenes 54

G1oDbal PrOCEAUIES SECHIOM .. cuveeueeeuteeuieeieeteeie et ete et et et eabeesteeabeeabeeabeebeeaeeeneeenteenbeenbeenseenneeneean 55

GloDbal PrOCEAUIES SECHIOM .. e uveeueeeuteeuteeteeit et et et et et et eteeateesbeeabeeabe e bt eateeneeenteenbeenbeenseenneeneean 56

INOLEPAA SECLIOM ... uveuteeuteeateeate et et et ettt et et et e e bt eabeeabeeateenteenteeabeembeeaeeemteeneeenteenbeenbeanseanseensean 56

INOLEPAA SECLIOM ... uveuteeuteeate et et et et ettt et et et e bt eabeeabeeabeemteemteeabeembeeabeemeeeneeenteenbeenbeenseanseeneean 56

USing the DIREXX @AIEOT. . .eeuveeuteeteetieieete ettt ettt ettt ettt et ettt et e et e et e eabeeabeeateenbeeneeeabeenbeenbeeneeeneean 57

USING YOUL OWI @IEOL. ...t euteeuteeiieeate ettt ettt ettt et et et et e et e e st e eateeateeateeabeeabeeabeemeeenteenteenbeenbeenseeneeeneean 58
Writing REXX c0de fOr DIREXXc.veeteeieeiieieeie ettt ettt ettt ettt ettt et e e sbe e bt e bt e bt e bt esbeesbeesbeanbeanses 59

The DrRexX eXecution MOAELccvvvriiiiiiiiiiiiiiee ettt e e e et e e e e e ee e e e e e e e esaaaeeeeeeesssaaeeeeesessesssaneeeeessans 60
DrRexx subcommand ENVITONIMEIESceeveerrrrrreeeeeiiireeeeeeeeesisaeeeeeesseesareeeeesesssssseesseesssssssssseesessmssssssesesssnnns 61

Error handling in DIREXX. ... ceueetteiieiieie ettt ettt ettt et ettt et et e et e eabeeabeenbeeneeeneean 62
INVOKING DIREXX utteutteuteiieeie ettt ettt ettt ettt et et e et et e et e eateeabeembeeabeemeeenbeenteenbeenbeenbeeneeeneean 62
Getting started: Your first DIReXX appliCationceoueeueerierrieesieeieeieete et ete et et eeeeeeeeeebeebeebeeeeeneeas 63
DrRexx programming tECHMIGUES.ueevteteeteeieeteeteete et eteeteebeeteeeeebeebeeabeeabeeneeenseenteenbeenbeenseeneeeneean 64
Creating 2 mMOdal dialOg eeveeieeiieie ettt ettt ettt ettt et et eee s 65

Associating data with dialogs and CONLIOLS........ueeuieiiiriieiieie ettt 66

Adjusting controls when a dialog iS 1eSIZed.......ueeiueeiiiiiiiiieiiee et 67

Creating and diSplaying DOP-UD IIEIIUSeeuteeteeteeteeteeieeteeteeteeteebeeeeeeeeeeenseenseeseenseenseensens 68

Signaling that data entry iS COMPIELE.ceuerueieieeiieie ettt ettt ettt s saae s 68

Working with dynamic CONEIOIS.eeuiiiieiiiiieiiete ettt ettt ettt e sb ettt e bt e sbe e sbeesbeenbeeees 69

Putting user hints into your DrRexx appliCation.........cccueerueerueerieerieeiieeieesie et 70

Preventing dialogs from initially flashing.........ccceoieiiiiiiiiiiiiiieee e 71

il

DrDialog Reference
Table of Contents

DrRexx

DrReXX SAMPIE PIOGIAIMIS ..eeuvveerureerutrerieeeiteeniteeniteesteesteeeteeebeeensteesabeesateesaseesbaeenseeessseessseessseesseesnsesensees 71

DrReXX eXamMPIE DPIOGIAIIIS. . uveeuveeureeuteeueeeteateeteeteeuteeseeatesaseamteeaseanseaneeanseanseamseenseaneeenseenseenseenseenseanseensenn 72

DrReXX WINAOW fUNCHOMS .vvvveeeiiieeieieieeeeeiiieeeeeeeeeieee e e e e eeetaeeeeeeeseesaaeeeeeeesessaseeeeeessssnsseeeesessassanneeesssanns 72
[0 013 USSP S SRR 74
L8 ettt ettt et e e e e et e e e e et e e e e e ——eeeeeaa ———— et eeeaaa———teeeeaaa——aaeeeeeeanatareeeeeeannraaes 75
[114111 SRR 76
BLAINIC. ..ttt ettt e aaaaaaaaaaaaaaaaaaaas 77
5 ST SRS ORRRRRRRRNt 77
N 110N 78
AT 1o (=PSRNt 78
0o PSSR 78
| 2701400 1 HUST U TR RU TR 79
|25 17210 (= TSR TRTR 79
| DI RT: o) (SRRt 80
| 25 17210 (<16 KO RUTTTRT 80
FOCUS ..ttt ettt ettt e e e e e e aaaaaaaaaaaaaaaas 80
e T L5 o) 1 WOt 81
1D AR 81
) & 11 0L SRR 82
NS L« SRR 83
Add (for a 1ist BOX OF COMBO DOX)..vvviiiiiiiiieiieeeieiiiieieee ettt e eeeee e e e e e e earee e e e e e eeaaeaeeeeessennanes 83
Add (£Or @ NOLEDOOK) ... evvveeiieiiieeiieeiee ettt e e e et e e e e e e e e e s e s eesaaaeeeeesseenseaeeeeessennanes 83
PN (6 G0) A W ofe) 1 17 101 1= o PR SORRRRRRRRRNE 85
| D1 (=2 1RSSR 86
Delete (for a 1ist bOX OF COMBDO DOX)..ciiveuueieiiieiiiiiiieiieee e ettt e et e e e e eeaaee e e e e e eeaaareeeeessennanes 86
| DIS (TSI 6 (o) i I 10 17=) 000 <@ NSRRI 86
Delete (fOr @ COMEAINET). uuvvveeeeiieiieieeieeeeeeetieeeeeeeeeeteeeeeeeeeeaaeeeeeeseessaaeeeeesesesaseseeessssassreeeeeeesssnnenes 87
) LT3 s TSR 87
Item (for a list DOX OF COMDBDO DOX):uvvieeiiiiiiieiiieeieiieieieeeeeeeiteee e e e e eeeaaee e e e e e e eeaaeeeeeeesseaseneeeeessennnnes 87
J (02 0 (0 I 101 1=) 0010 @ TEUU RSO RRRRRRRRRE 88
TteIN (FOI 8 VAIUE SELY..couvvveeiieiiieeiieeeee e ettt e e e e e e e e e e eeae et e e e e s eeeaaaeeeeesseessaaeseeeeesssnseaeeeeessnnnnanes 89
| (00 A W (0 I 1 e (=3 o PSSOt 90
Ttem (FOI 8 COMEAIMIET). .. uvvvvveeeiieeeeeeeeee ettt e e e e et e e e e e et et e e e e e e e eaaaeeeeesesessaaeseeeessssnseneeeeessnnnranes 91
TS [T e] AR 91
Select (for a list bOX OF COMDBO DOX)...uuvrriiiiiiiiiriiiieee et e e et e e eetrre e e e e eeaare e e e e e s eenaeneeeeas 92
Select (for a single 1ine edit COMEIOL .. .viruutriirieeiieie ettt ettt ettt st s 92
Select (for a horizontal or vertical SCIOLL DAT).........vveiiiiiiieiieeeeeeieeeeee et 93
Select (fOr @ SPINDULLIOM) ... eeuveeureeuieeuteeite et et et ettt et e et eatesate st e sate et e satesateeatesateeaeesseesaeesanesneenas 93
Select (for a push button. check box. radio button or bagbutton).........cceceeeeriersieniieiienienieeee 94
AT (ol a6 o) ;T 101 (=) 0010 O NPT 94
MY (ol a 6 o) s T2 L0 (=T =1 O OO 95
AT (ol a6 o) - T) s (=3 o R 95
Select (fOr @ CONMLAIMET). ...cciiierereieeeeeieeeeeee e ettt e e e e eet e e e e e eearaeeeeeesseenaaaeeeessessaareeeeeesesnrreeeeeas 96
RAMGE. ..ottt ettt sttt et e b et e sbt e e s bt e st s bt e bt e bt e e sabeesabee et 97
Range (FOr 8 dIalo@).....ceueeuiieiiiieeie ettt ettt ettt ettt ettt et et ettt e e s 97
Range (for a single-1ine edit CONLIOLY......eeuietieiiiiiieie ettt ettt et e 98
Range (for a horizontal or vertical SCIOIl DAr).....cccueiuiiiieiiiiieie ettt 98
Range (fOr 8 SPINDULLON)......eeuieiieeieeie ettt ettt ettt et et et e e eateebeembeeabeeneeeneean 98
RANGE (FOI 8 VAIUE SEE)...-veeuveeuieeiieeieeie ettt ettt ettt et ettt et et e et et e e et e eateeateebeembeembeenteeneean 99

DrDialog Reference
Table of Contents

DrRexx
RaNGE (FOI 8 SHIACT). ..ottt sttt e st e st esbt e s bt e sbeesbeesbeesbeeaes 100
SV L ettt ettt ettt e bt e bt et e e bt e bt e bt et e e bt e bt e be e beenbeentean 100
| L0 11 A USRI 101
(©00) (o) USRS 101
) 0 RS RRRR 103
DA ettt ettt ettt ettt e te e bt bttt et e e bt e bt e be e beenbeentean 103
Drag (fOI 8 CONLAINMEI). . uveeuteeuteriteeiteeiteeite ettt e st e st e st e eatesa b e sbtesbtesbeesatesbeesseesbtesbeesbeesbeesbeenbeannes 106
) 0] o SO OO OO OO OO OO U TP USRI 107
Drop (fOr @ COMEAIMET). . .uveeueeeuteeiteeiteeiieeite et e ettt set et e et e satesateshteshtesatesbeesbeesbeesbeesbeesbeesseenseennes 108
| R D)L= 2101 L RSN 109
aITICE vttt ettt ettt ettt et et et et e ——————————————————————————————————tataaaaaaaaaaaaaaaaaaaes 110
YA =AU 111
NS N (=) 11 WP 113
(€151 1 1 U TUTRTTTR 115
(@00 115 C0) KRR PTRN 116
(O TS T TSRS 116
DrReXX MENU FUNCHIOMS. cuvvvvveeeeeeietiiieeeeeeeeitteeeee e e eeete et e e e e eeaaeeeeeeeeeeaaaeeeeeessenstaeeeesssenssaaseeeessasnsareeeeessnnns 117
MENUPOPDUD. .ttt ettt ettt ettt et st e st e et et e bt e esbteesabeesabeesabeesabee e beeenabeesabeenn 118
Y (S 11010 1 T=e] =T RPN 119
Y (0000 Bz o) (=T AR TN 119
Y (S 010 S U TRURRTTT 120
DrRexX cONCUITENCY fUNCHIOMS. .. veeuveuteriteiiieiiieetie et eite et stte st e st e st e st esbtesbteshtesbeesatesatesbeesbeesbeesbeesbeenaeennes 120
121 o RO 121
SO, ettt ettt ettt ettt e bt e bt et e e bt e bt e bt e bt e bt e bt ebe e beebeentean 122
RESUIL. ..ottt e e e ettt e e e e e e et e e e e e s s eeeaaaa et eeeeeea e et e e e s s anaaaaeeeeeaans 122
Lo 1 /SO SO PTU SRR 123
Sttt ettt e e e e e e et e et e ettt ettt et et e e e e e e eeeaeaereeaeeet—————————————————————————————————ttatatataaaaaaaaaaaaaaaaaes 124
. SRR 125
N [S15) o FE RO OO OO OO OO O OO U TP RRURRRTR 126
Concurrent programming €XaAMPIE.........ueeutertirierierie et eteetesite st e st e sitestesbtesbeesbeesbeesseesbeenaes 126
DrRexX miscellaneous fUNCLIOMS. ...uvvveeeeeiiiieieieeeeeeieieeeeeeeeeeetiee e e e e e e eeataeeeeeessenaeaeeeeessesssaaeeeeessssssareeeeessnnns 129
A (06 F2 1 o) RN 130
| A1 110 D F:1 72 VU TUTRTTTRT 131
| S/ 11 AU TTTTRTTRT 131
(@10] 115 1) FSUST TS TRTRRTTRT 131
(O TS RS TRN 132
DHALOG ettt ettt h e e h e a e e e h e e s bt e eh e e e h e e e ht e e a e e eb e e e bt e sheesheeebee bt ens 132
DHALOGS. ¢ttt ettt ettt ettt ettt eh e e h e h e a e e eh e e e bt e eh e e eh e e e bt e e hteebtenhteeheeeheeehee bt enns 133
a1 =) e 11015 SO USSP U PSRRI 133
(] 11 5] 001« FH USSP U PSR 134
Y6 (5151 1 N /=TSSR 134
| D) S0 A 13 () 1 RSP TN 135
DrDialog controls. 137
D oY) 14 o) FO USROS 137
PUSh DULEON COMETOL.uvuuuvuvririiiiiiiiiieiieieieieeeeeeeee ettt ettt ettt e et e e e e e e e e e e e e e e e sasassasasassssesesasssssessnsenerenerees 139
(O T=Te) Yoy A eTe) 1 L1 o) RPN 139
Radio DULLON COMIOL....coiiuiiiiiieieeieteeie ettt ettt e e e e et e e e e e e eabaeeeeeessesataeeeeessessaaeeeeesssssaseeeeesenns 140
AR 10) 111 (o) AP 141

iv

DrDialog Reference

Table of Contents
DrDialog controls

JA 01T aYeYe) et} 115 ¢ o) RO PRRRN 142
[@10)117: 0001 i e10) 115 40) NPT 142
| BT 00, a o0 1 115 (o) KU PPN 144
Single line €dit COMEIOL....coutiiiiiiiiieti ettt ettt ettt et et e bt e bt e bt e bt e s beesbeesbe e bt e bt esbeesbeesbeenbeennes 145
JAY L0 S FT O TSl Te F A ee) 115 o) AU PPN 146
[@f0] 01 0T0 X oY), ae0) 115 o) NRTRERRE PPN 146
SDIN DULLOM COMITOL. .. .ttutteutteaitete ettt ettt ettt et e bt e bt et e e bt e s bt e bt e bt e bt e bt e be e bee bt e bt e beenbeesbeesbeenbeenseenses 147
VAlUE SEU COMEIOL..uuvururururririiiiieeiieeeeeeeee et eee e et e e e e e e ee e et e e et e e eeeee ettt teeeeeeeeeaesesessssassssssssssssssssssssssesassssrsssenesereeerees 148
RS uater:) e o) § o Tz T aeTe) o 15 (o) PR 149
) 5 (0T uV40)017:1 Yoy o) | Mo alere) 15 o) FOUEE PPN 150
T T 5 o0 115 o) AP 150
(€010 10T o0 ae]e) 1150 SN USSP S RPN 151
Y =R e0) 115 xe) AR PRRRN 152
RECtANGIE COMIIOL .. vttt h e s ht e st e s et e s b e s bt e sbeesheesheesatesbtesbeesbeesbeesbeesbeenaeannes 153
o3 0 LoYaF: e WeT) 115 4 o) RPN 153
(O 11N 2: I e70) 111 (0 VU 154
| LA eTe) 115 ¢ o) AT 155
Bitmap BUtton COMEIOLuiiuiiiiiiiieie ettt ettt st sb e sat e s bt e sat e s bt e s bt e sbeesbeesbeesbee bt ennes 155
Bagbutton COMITOL.cuuiiuiiiiiiiie ittt sttt e st e s b e s bt e s bt e s htesheesate s bt e s beesbeesbeesbeesbeenaeannes 156
T8 (S0 115 (o) PPN 157
Bitmap COMEIOL. ..ottt sttt e et e s b e s bt e s bt e shtesbeesbte s bt e sbeesbeesbeesbeesbee bt ennes 158
| SRS e (= 1116 Kot) 115 ¢ o) HUUUR PPN 158
MaATQUEE COMEIOL .. uveeiutiieiiieitie ettt ettt ettt ettt e st et e et e ettt e sb bt e sbbeesabeesabeesabeeenbee e bt e enbaeensbeesabeesabeeanne 159
B0 oA 11 L SO SUUUPUS TSR 160
DrDialog specific controls 163
oS0 LoYeF: e WeTo) 115 0 e) U 163
(O 1N 2RI e10) 4115 (0] NP 164
LA eT0) 118 4 0) L TP 165
Bitmap DUttON COMEIOIS ... eeiuteiuieiiiieiie ettt sttt e b e s bt e sb e e shte s bt e saeesate s bt e sbeesbeesbeesbeenneenees 165
BagbUtton COMITOLS. . euveuteiutieite ettt ettt ettt ettt sh e s ht e sht e s et e s bt e sbeesbeeshtesheesbtesatesbtesbeesbeesbeesbeenbeennes 166
T8 (Sl eTe) 115 (0 KPR 168
Turtle cONtrol COMIMANTS.eeeeeeeeereieeeeeiieeeeeee e e eeeetee e e e e e e e e eeeeeesaaaeeeeeeseesaaeeeeeeesssnaaaeeeeessnns 168
MATQUEE COMEIOLS .. veeeuttieniieenitee ittt ettt ettt e sttt e st e st e e bt e ettt e sbbeesbbeesubeesabeesabee e beeebbeenbaeensbeesabeesabeeanne 170
DrsAide 173
The DrsAide exXtension MECHANISIIL.ceeviiurrrreeeeiiieieeeeeeeeeeeaeeeeeeeeeesaeeeeeeessesarereeeessesssraeeeeesssssarreeeessnnns 173
ST B YN L (S o o) NSRS 173
The default DISATAE LOOL....uuueiiiiiieiiiieee ettt e ettt e e e e e e e e e e s seaaaaeeeeessessaaaeeeeessssnarreeeessans 174
Invoking the default DrsAide tool from DrDialog........ceeieiiiiiinieiieiieeieeeee e 174
Invoking the default DrsAide tool from the Workplace Shell.......c.ccovoeriniininiinienieieeee, 176
DrDialog fUNCHOMN. .. .o eueeeteiiie ettt sttt st e b e s bt e s bt e shte s bt e sbte s bt e e bt e sbeesbeesbeesbeenaeeaes 177
DrDialog 'Init’ SUDCOMMIANG. ... eevuteiiieiiieieiieeete ettt sttt sttt e bt e b e b e 178
DrDialog 'Owner’ SubCOMIMANGccverutiiiiiiiiriierte ettt ettt ettt e bt e bt e b e 178
DrDialog 'Focus' SUDCOMMIANG.ceruveiuiiiiiiiiiiieete ettt sttt st e s e b 179
DrDialog 'GetRES' subcommand.cccueeeiiiiiiiniiiieiie ettt et 179
DrDialog 'SetRES' SUbCOMMANC.veiuteiiiiiiiiiieiie ittt st 179
DrDialog 'Filename' SUbCOMMANGcc.verutiiiiriiiniiiieeiie ettt sttt 180
DrDialog '"Modified' sSubcOMMmMANA.........eeriiiuiiiiiiiiiieiie ettt 180

DrDialog Reference
Table of Contents

DrsAide
DrDialog 'Dialogs’ SUDCOMMANA.cuveruteriieiiiiiiiiniie ittt sttt sttt st e bt e bt e b e 180
DrDialog 'Controls’ SUbCOMMANGceeuveruieiuiiriierieeite ettt sttt ettt e st e bt e bt e saee e 180
DrDialog 'Events' SUDCOMIMANGceuveiuieiiiiiiiiiieiie ittt ettt ettt e b e b 181
DrDialog 'Globals' SUDCOMMANA.cuveeuteriieiiiiitieiie ettt ettt st st e bt e b 181
DrDialog 'Global' SubcOMMANGceuverieiiiiiiiiierte ettt ettt sttt et e b e b 181
DrDialog 'NewDialog' subcommand...........cooueviiriiiieniiiieiiiies ettt 181
DrDialog 'NewControl' subcommand...........ccceeueriiriiiiiiieiieie ettt 182
DrDialog 'DropDialog’ subcommand..........cocueviiriiiiiiiiiiiiiiiete ettt 182
DrDialog 'DropControl’ SUbCOmMMANC........verueiruieriiiieiieiieeterte ettt sttt 182
DrDialog 'Dialog’ SubCOMMANGcceuveruieiuiiiiiiiiieiie sttt sttt ettt st e bt e b e e 183
DrDialog 'Control’ subcommand...........cueeueriiiieniiiieiie ettt e 183
DrDialog 'Select’ SUDCOMIMANG.ceeuveruieeiiiiiiiitieite ettt ettt ettt e sbee st e st e sbe e bt e sbee e 183
DrDialog 'Name' SUDCOMMIANG.ceruveruieiiiiiiiierie ettt sttt ettt e bt e b e 184
DrDialog "Text' SUDCOMMANG.ceuueruieriiiiiiiiieiie ettt sttt ettt bee bt e sbeesbeesbee e 184
DrDialog 'Hint' subcommand..........cooueeiriiiiiiiiinie ettt et 184
DrDialog 'Position’ SUbCOMMANC.ceeutiiiiiiiiiiiieiie ettt sttt 185
DrDialog 'Style' subcommand.........cooueeieiiiiiiiiiie e 185
DrDialog 'Font' SUDCOMMANG.ccuueruieiiiiieiiieiieeite ettt sttt sttt e bt e bt e b e 186
DrDialog 'Color' SubcOmMmMANG.ceeueruieiiiiiiiieeie ettt sttt st 186
DrDialog 'Event' subcommand...........cceoueeiiiiiniiniiiie ettt et 187
DrDialog 'Class’ SUDCOMMANG........ueeuteeuieeiieiiiiiteete ettt sttt et e st esae e bt e b e e 188
D) YN T (S e Yo) KT 188
PN A28 10 0] O USRS U PSRRI 189
R DAY A A8 10 Yo) F RSN 190
2. 0.4 U RISR (00 FETT SRR 190
| 20,4 B o X 0 o) RO 190
) 23\ T 0 o) RPN 191
Writing your owWn DISAIAE tOOL .. .couueruiieiieieeie ettt et ettt 192
Adding hints t0 your DrSAIe t0OL......cccueiiiiiiiiiiieiiee ettt 195
Utilities 197
) 2300 o) D)) 5 PPN 197
R DN T0) 20 O PPN 197
R DA T AP 198
R DAY PPN 198
User preferences 199
Related packages. 201
Acknowledgements 203
Footnote 205
Footnote 207
Footnote 209

vi

DrDialog Reference
Table of Contents

Footnote 211
Footnote 213
Footnote 215
Footnote 217
Footnote 219
Footnote 221
Footnote 223
Footnote 225
Footnote 227
Footnote 229
Footnote 231
Footnote 233
Footnote 235
Footnote 237
Footnote 239
Footnote 241
Footnote 243
Footnote 245
Footnote 247
Footnote 249
Footnote 251
Footnote 253
Footnote 255
Footnote 257

vii

DrDialog Reference
Table of Contents

Footnote 259
Footnote 261
Footnote 263
Footnote 265
Footnote 267
Footnote 269
Footnote 271
Footnote 273
Footnote 275
Footnote 277
Footnote 279
Footnote 281
Footnote 283
Footnote 285
Footnote 287
Footnote 289
Footnote 291
Footnote 293

viii

Introduction

(c) Copyright International Business Machines Corporation 1993.
All rights reserved.

Welcome to...

DrDlalog

Wntten by Dawd C Momll =
e R R R R

LLH_LLH_H-I

DrDialog is a tool for creating and editing 0S/2 Presentation Manager
dialogs . It is both powerful and easy to use.

With its DrRexx feature, it is also a complete visual programming
environment for REXX based applications.

DrDialog can create new dialogs from scratch, as well as import dialog files
previously created with the standard 0S/2 dialog editor (i.e. DLGEDIT). It
also has the unique ability to grab dialogs, menus and controls right off
the screen and import them directly into the editor.

DrDialog creates standard .RES and .DLG files for use with the 0S/2 resource
compiler (i.e. RC). It can also create equate files for use with various
high-level languages (i.e. .H files for C or C++, and .DEF files for
Oberon).

DrDialog has a number of tools to help you create and edit dialogs. Most of
the tools can also be invoked in several ways: from a menu bar, pop-up menu,
or a toolbar, whichever is most convenient to your style of working.

The available tools include:

Tools This toolbar window contains iconic buttons to display all of the
other tool windows and perform global actions for the editor.

ID The ID tool window. This window controls the type of information
displayed in each control while the editor is in ID mode.

Controls The controls tool window. This window contains icons for each
control type supported by the editor. Use button 2 to drag and drop an icon
from the controls tool into the edit dialog to create a control of the

selected type .

Group The group tools window. This window contains iconic buttons which
perform various operations on the currently selected group of controls
within the current edit dialog.

Size The size tool window. This window allows you to display and edit the
size and location of the currently active control in the current edit
dialog.

Text The text tool window. This window allows you to edit the text and font
for the currently active control in the current edit dialog.

Color The color tool window. This window allows you to edit the colors for
the currently active control in the current edit dialog.

Name The name tool window. This window allows you to display and edit the
names and associated ID's of all controls in the current edit dialog.
DrRexx The DrRexx tool window. This window displays the set of events
associated a control in the current edit dialog. It also allows editing the
REXX code associated with the current edit dialog.

Menu The drop-down menu tool window. This window allows you to edit the drop
-down menu associated with the current edit dialog.

Run-time The run-time tool window. This window allows you to control the
execution of the DrRexx application being edited.

Asking for help

This document describes how to use DrDialog. It can be read sequentially or in a random order, using the
imbedded hypertext links. It can also be accessed contextually, directly from DrDialog.

To request contextual help for any DrDialog tool or window, do the following :

1.Make sure the desired window has the focus (click on its title bar with button 1 if necessary).
2.Position the pointer over the part of the window you want help with.
3.Press F1 to request help.

If specific help about the icon or control you are pointing at is available, it will be displayed. Otherwise, more
general help about the particular DrDialog tool or window will be displayed.

Help is also provided by the two controls at the bottom of the DrDialog background window. As the pointer is
moved around the screen, the leftmost control displays a description of the DrDialog window the pointer is
currently in, while the rightmost control describes the function of the control the pointer is currently over . If the
pointer is over an edit dialog, the rightmost control displays the ID number, name, type and hint text for the
control pointed at in the form: ID = name [type] 'hint', while the leftmost control indicates whether the edit
dialog containing it is active (i.e. the current dialog) or inactive.

Editing a dialog

DrDialog is designed to make creating and editing dialogs as simple and intuitive as possible. Wherever possible,
it attempts to follow CUA guidelines for selecting and manipulating controls and their attributes.

The editor also allows you to edit more than one dialog at a time. In fact, any number of dialogs can be on the
screen at the same time. However, at any given instant, only one dialog is considered to be the current edit dialog.
This is an important distinction to remember, because all DrDialog tools operate on the current edit dialog. The
current, or active, dialog appears normal, while all inactive dialogs appear to be subdued, or greyed out.

You can make any inactive dialog the current edit dialog by clicking on it with either the left or right mouse

button. You can also use the Dialog select tool to select the new current dialog from a list of all dialogs being
edited. This is especially handy if the dialog you wish to edit is not currently visible .

Container controls

Controls may be considered to be of two types:

oControls which convey information or interact with the user (e.g. text fields and push buttons)
oControls which help to visually organize the first type of control (e.g . group boxes)

In DrDialog the second type of control is called a container control and has certain special attributes. The control
types recognized by the editor as container controls are:

———1Group box
E Frame
Ll

Rectangle

L1 Canvas (not a standard OS/2 control)

Paint (not a standard OS/2 control)

"""" | Billboard (not a standard OS/2 control)
g Turtle (not a standard OS/2 control)

———1Bagbutton (not a standard OS/2 control)

— 1 User (not a standard OS/2 control)

Note: Billboard, turtle, and user controls can either be container or non-container controls, depending upon the
setting of the container check box in their respective style dialogs.

Note:
Container controls differ from non-container controls in the following ways :

oContainer controls are always visually below non-container controls.
oContainer controls contain things (non-container controls and other container controls). When a container
control is moved or copied, the controls it contains are moved or copied with it.

Note: For a control to be contained within a container control, it must be completely within the bounds of the
container control. If any part of the control is outside of the container, then it is not contained within that
container .

The notion of being contained is important because many DrDialog tools perform actions on the controls
contained within a container as well as on the container.

Tabbing order

DrDialog automatically determines the tabbing order between controls based on their spatial arrangement within a
dialog and on whether or not they are contained within a container control or not:

oFor controls contained within a container control the tabbing order is top- to-bottom and left-to-right.

oFor controls not contained within a container control, the tabbing order is left-to-right and top-to-bottom.

oFor nested containers, each nested container behaves as if it were a single large control for the purpose of
determining its tab order within the container it is nested in. Once its position in the tab order is reached, tabbing
precedes among the controls it contains using the first rule above. When the last control in the container is
reached, tabbing continues with the first control in the next nested container.

Only the lower left hand corner of a control is used in determining the tabbing order of controls.

Note: The exception is a combo box control, where the drop-down portion of the control is ignored for the
purpose of determining the tab order.

Selecting controls

All controls within the current edit dialog are in one of three states:

olnactive
oSelected
oActive

These three states are indicated visually within the editor by the appearance of the grab handles drawn on each
control when in edit mode, and illustrated below :

Button 1

Inactive:

i Button 1)
Selected:

"N
tButton i E

Most DrDialog tools operate on the set of currently selected controls. Selection is performed using button 1 of the
mouse. Whenever there is one or more selected controls, one of the selected controls has the additional status of
being the active control. Normally, this is the first control selected when performing a selection operation.

Active:

To select a single control: Click and release button 1 anywhere within the control to be selected. All other
previously selected controls revert to the inactive state, and the control clicked on is selected and becomes the
active control.

To select several controls: Press button 1 and drag the pointer over all controls to be selected. As soon as button 1
is pressed, all previously selected controls revert to the inactive state. The first control the pointer touches
becomes the active control, and each subsequent control becomes a selected control.

Note: If the pointer starts in a control contained within a container control and later passes into the container, the
container will not be selected. Conversely, if the pointer starts within a container and later passes over controls
contained within the container, the contained controls will not be selected. This complicated sounding, yet simple,
rule makes it easy to select either containers or the controls contained within them.

To extend the current control selection: Once button 1 of the mouse has been released, inactive controls can be
added to the current set of selected controls using either of the following methods:

oPress the Ctrl or Shift key on the keyboard, then select the additional controls using either of the techniques
described above (i.e. either click or perform a drag operation with button 1 pressed).

oPosition the pointer over the lower left hand grab handle of the first inactive control to be added, then either
click or begin a drag operation with button 1.

To change the active control: An already selected control can be made the active control by clicking (i.e. pressing
and releasing) button 1 in the lower left hand grab handle of the control. The previous active control will switch
to the selected state.

Note: The dialog itself can only be selected using the first method described above. It will never be selected
using any of the other methods.

Note: Double-clicking a control with button 1 will both make it the active control and invoke the DrRexx window
so that you can edit or view the REXX event handlers associated with the control.

Moving controls

Any control can be moved around within its dialog by placing the pointer over the control and then using button 2
of the mouse to drag the control to its new location.

If the control to be moved is in the selected or active state, all other selected or active controls are also moved
with it. This fact is indicated visually by the size of the tracking rectangle that appears while the mouse is being
dragged.

If any of the controls being moved is a container control, all of the controls it contains are also moved.

Note: The entire dialog can also be moved using this technique. Just position the pointer over any part of the
dialog not covered by a control (e .g. the title bar) and use button 2 to drag the dialog to its new position as
described above.

Moving controls between dialogs

Using the technique described in the previous section, controls can only be moved around within the current edit
dialog. However, if desired, it is also possible to move controls between dialogs.

To do this, first make sure that both dialogs involved in the operation are visible on the screen, and that the dialog
containing the controls to be moved is the current edit dialog. Then press the Shift key on the keyboard and
perform a move operation exactly as described before, making sure that the pointer ends up somewhere over the
dialog to which the controls are being moved.

Pressing the Shift key removes the bounds keeping the move operation within the current edit dialog and allows
you to drag the controls anywhere on the screen . When you release button 2 of the pointer, the editor checks to
see which edit dialog is directly under the pointer and moves the controls to that dialog. If the pointer is not over
any edit dialog, the editor beeps to indicate an error and does not move the controls.

Copying controls

Any control can be copied by placing the pointer over the control, pressing the Ctrl key on the keyboard, and then
using button 2 of the mouse to drag a copy of the control to its new location.

If the control to be copied is in the selected or active state, all other selected or active controls are also copied.
This fact is indicated visually by the size of the tracking rectangle that appears while the mouse is being dragged.

If any of the controls being copied is a container control, all of the controls it contains are also copied.

Note: The entire dialog can also be copied using this technique. Just position the pointer over any part of the
dialog not covered by a control (e .g. the title bar) and use button 2 with the Ctrl key pressed to drag a complete
copy of the dialog to its new position as described above.

Copying controls between dialogs

Using the technique described in the previous section, controls can only be copied within the current edit dialog.
However, if desired, it is also possible to copy controls between dialogs.

To do this, first make sure that both dialogs involved in the operation are visible on the screen, and that the dialog
containing the controls to be copied is the current edit dialog. Then press the Shift key on the keyboard and
perform a copy operation exactly as described before, making sure that the pointer ends up somewhere over the
dialog to which the controls are being copied.

Pressing the Shift key removes the bounds keeping the copy operation within the current edit dialog and allows
you to drag the controls anywhere on the screen . When you release button 2 of the pointer, the editor checks to
see which edit dialog is directly under the pointer and copies the controls to that dialog. If the pointer is not over
any edit dialog, the editor beeps to indicate an error and does not copy any controls.

Sizing controls

The currently active control can be resized by placing the mouse pointer over one of the eight grab handles and
using button 2 of the mouse to drag a tracking rectangle into the desired shape. The fact that the mouse is over one
of the grab handles is indicated by a change in the shape of the mouse pointer to reflect the directions the control
can be resized in.

If the control being resized is a container control, only the container itself is affected by the resize operation.
However, if the Ctrl key on the keyboard is being pressed at the start of the resizing operation, all controls
contained within the container are resized proportionally also.

Editing a control's style information

Each control has associated with it style information that can affect the appearance and behavior of the control.
The style information for a control can be edited by selecting the Style... option from the pop-up menu that
appears after clicking button 2 while the pointer is over the control (the control need not be selected first).

Changes made to the style information using the pop-up dialog that appears will be reflected immediately in the
appearance of the control. Once all changes have been made, they can be finalized either by pressing the Enter
key or clicking the OK button at the bottom of the dialog. Alternatively, the previous style information can be
restored by clicking on the Cancel button. In either case, the pop- up dialog will be removed from the display.

Note: Only one pop-up dialog exists per control type. If the pop-up dialog for a particular control type is already
being displayed when a new control of the same type is selected, the style information for the newly selected
control will replace the previous style information within the pop-up dialog. This allows the style information for
a collection of identical control types to be edited very quickly and easily. The same is true if button 2 is clicked
within a control of the type corresponding to the pop-up dialog.

Editing a control's REXX code

Each control optionally has associated with it REXX code to process various events that occur for the control (e.g.
a push button click event). The REXX code for each control is edited using the DrRexx tool window. The editor
provides a quick path to this tool by double-clicking a control in the edit dialog. The DrRexx tool window will
appear with the set of event pages for the clicked on control already displayed. To select the REXX code for a
particular event, click on its corresponding page tab and the REXX code associated with the event will be
displayed for editing.

Note: If the number of events defined for a particular control is large , it may be necessary to use the scroll
buttons on the side of the DrRexx notebook in order to scroll all of the event page tabs into view.

Editing a control's attributes using the pop-up menu

While all of a control's attributes can be edited using the various tools provided by DrDialog, the editor also
provides a means to quickly and easily modify most of a control's attributes using a context sensitive pop-up
menu.

To use the pop-up menu, first position the pointer over the control whose attributes are to be changed, then click
(i.e. press and release) button 2 of the mouse.

The pop-up menu's options are divided into three categories:

oGlobal
oControl sensitive
oGroup sensitive

The global options at the top of the pop-up menu are not specific to the control over which the pointer is
positioned. The two global options are:

Tools This submenu contains icons for each of the DrDialog tool windows. Selecting an icon will display the
corresponding tool window. This submenu contains the same set of icons displayed in the Tools submenu of the
DrDialog menu bar.

Controls This submenu contains icons for each type of DrDialog control. Selecting an icon will create a
corresponding control centered at the point where the pointer was when the pop-up menu was invoked. This
submenu contains the same set of icons displayed in the Controls submenu of the DrDialog menu bar and in the
Control window.

The control sensitive options in the middle of the pop-up menu operate on the control the pointer was positioned
over when the pop-up menu was invoked. The control sensitive options are:

L]

Remove This submenu contains two icons. The J icon hides the specified control. The control can be made
g
JE

visible again using the button available in the _Group window or pop-up menu option. The J:: icon
deletes the specified control. If the specified control is the dialog itself, you will be prompted whether you wish to

delete the entire dialog or not.

Events This submenu lists all DrRexx events defined for the specified control . Selecting an option from the
submenu will cause the DrRexx window to appear with the specified event page already displayed.

Hint Displays a pop-up dialog that allows you to change the hint text for the specified control. The hint text will
be displayed at run-time whenever the pointer passes over the specified control.

Text Displays a pop-up dialog that allows you to change the text for the specified control.

Style Displays a pop-up dialog that allows you to change the style for the specified control.

Name Displays a pop-up dialog that allows you to change the name of the specified control.

ID Displays a pop-up dialog that allows you to change the numeric ID of the specified control.

Color Displays a pop-up dialog that allows you to change the foreground and background color of the specified
control. If you need to change more than the foreground or background color of the control, you must use the
Color window.

Font Displays a pop-up dialog that allows you to change the font for the specified control.

Adjust Displays a pop-up dialog that allows you to change the position or size of the specified control one pel at a
time. Whether the size or position of the control is adjusted depends upon the position of the pointer at the time

10

the pop-up menu was invoked. If the pointer was over one of the grab handles for the control, the size of the
control will be adjusted. If the pointer was anywhere else over the control, the position of the control will be
adjusted.

Note: If the pointer is over a control that is selected, all other selected controls are also adjusted at the same time.
This makes it easy to move an entire group of controls around one pixel at a time.

The group sensitive option at the bottom of the pop-up menu operates on the group of currently selected controls
and is enabled only if the control the pointer is positioned over is selected or active. The group sensitive option is:

Group Displays a pop-up dialog containing iconic buttons for aligning, spacing, sizing, hiding, showing, deleting
and setting the styles of the current group of selected controls. These are the same buttons that can alse be found
in the Group window.

Any pop-up dialog that appears as a result of selecting a pop-up menu option will automatically be removed when
any other DrDialog window is given the focus or a new pop-up menu is requested. It can also be removed

explicitly by clicking the or buttons in the dialog.

Keyboard shortcuts

Many of the DrDialog editing operations that can be performed using the pointer can also be performed using the
keyboard. These keyboard shortcuts can be separated into several different groups based on the type of operation
they perform :

Navigation and selection

< Move the pointer left.

> Move the pointer right.

A Move the pointer up.

| Move the pointer down.

Enter Select the pointed at control (and unselect all other controls).

Ctrl-Enter Add the pointed at control to the current selection. If the control is already selected, then make it the
active control.

Tab Select the next control in the same container as the currently active control. The newly selected control is
made the active control and all previously selected controls are unselected. If the current active control is the
dialog frame, the next dialog in the ring of dialogs being edited is made the current edit dialog . If no control is
currently selected, no action is performed.

Shift-Tab Select the previous control in the same container as the currently active control.

Ctrl-Tab Add the next control in the same container as the currently active control to the selection and make it the
new active control. If no control is currently selected, no action is performed.

Ctrl-Shift-Tab Add the previous control in the same container as the currently active control to the selection and
make it the new active control. If no control is currently selected, no action is performed.

Home Select the current dialog's frame (and unselect all other controls) .

Page Up Select the control containing the current active control (and unselect all other controls). If no control is
currently selected, or the dialog frame is currently selected, no action is performed.

Page Down Select the first control contained within the currently active control (and unselect all other controls).
If no control is currently selected, or the currently active control does not contain any controls, no action is
performed .

Esc Unselect all currently selected controls.

11

Editing

Ctrl-< Move the pointed at control left. If the control is part of the current selection, all selected controls are
moved. If the pointed at control is the dialog frame, the entire dialog is moved.

Ctrl-> Move the pointed at control right.

Ctrl-* Move the pointed at control up.

Ctrl-I Move the pointed at control down.

Alt-< Left align all currently selected controls with the current active control .

Alt-> Right align all currently selected controls with the current active control.

Alt-" Top align all currently selected controls with the current active control .

Alt-| Bottom align all currently selected controls with the current active control.

| Horizontally center align all currently selected controls with the current active control.

_ (Underscore) Vertically center align all currently selected controls with the current active control.

H Evenly space horizontally all currently selected controls with respect to the current active control (see
Horizontally space controls for more information on this operation).

V Evenly space vertically all currently selected controls with respect to the current active control (see Vertically
space controls for more information on this operation).

X Make all currently selected controls have the same width as the current active control.

Y Make all currently selected controls have the same height as the current active control.

\ Make all currently selected controls have the same style as the current active control.

= Make all currently selected controls have the same height, width and style as the current active control.

? Display a pop-up dialog allowing the hint text for the pointed at control to be edited.

T Display a pop-up dialog allowing the text for the pointed at control to be edited.

N Display a pop-up dialog allowing the name of the pointed at control to be edited.

I Display a pop-up dialog allowing the numeric ID of the pointed at control to be edited.

C Display a pop-up dialog allowing the foreground and background colors for the pointed at control to be edited.
F Display a pop-up dialog allowing the font for the pointed at control to be edited.

S Display a pop-up dialog allowing the style of the pointed at control to be edited.

A Display a pop-up dialog allowing the position or size of the pointed at control to be adjusted. If the pointer is
over one of the control's grab handles, the size of the control will be adjusted; otherwise its position will be
adjusted.

G Display a pop-up dialog permitting operations that work on the currently selected group of controls to be
performed.

E Display a pop-up menu of all events defined for the pointed at control. Selecting an item will display the
corresponding event handling code for the pointed at control.

Enter (the Enter key on the numeric keypad). Display a pop-up menu of all events defined for the pointed at
control. Selecting an item will display the corresponding event handling code for the pointed at control.

Space Make a copy of the pointed at control and select it (and unselect all other controls). If the control pointed at
is the dialog frame, no action is performed (use Ctrl-Ins if you wish to copy an entire dialog). Note that the copied
control will appear on top of the original control.

End Display the DrDialog context-sensitive pop-up menu (see the section on editing a control's attributes using
the pop-up menu for more information).

B Display a pop-up menu of all DrDialog tools. Selecting an item from the menu will invoke the selected tool.
Ins Display a pop-up menu of all controls. Selecting an item from the menu will insert a new control of the
selected type centered on the position originally pointed at.

Ctrl-Ins Make a copy of the pointed at control and all controls it contains. If the pointed at control is part of the
current selection, all other controls (and the controls they contain) are also copied. If the pointed at control is the
dialog frame, the entire dialog is copied. Note that the copy will appear on top of the original controls or dialog.
Del Deletes all selected controls. The pointer must be over one of the controls in the current selection for the
operation to proceed. If the pointed at control is the dialog frame, you will be prompted first if you wish to delete
the entire dialog. If any of the selected controls have associated event handlers, you will also be prompted first of
you wish to delete all of the controls.

12

- Hide the pointed at control. If the control pointed at is the dialog frame , the entire dialog is hidden, and the next

dialog in the ring of dialogs being edited is selected for editing. If the pointed at control is part of the current

selection, all selected controls are hidden.
+ Show all currently hidden controls.

Tool selection
Ctrl-F1 Display the Tools window.

Ctrl-F2 Display the Controls window.
Ctrl-F3 Display the Group window.

Ctrl-F4 Display the Dialog select window.

Ctrl-F5 Display the Run-time window.
Ctrl-F6 Display the DrRexx window.
Ctrl-F7 Display the Menu window.
Ctrl-F8 Display the ID window.
Ctrl-F9 Display the Text window.
Ctrl-F10 Display the Color window.
Ctrl-F11 Display the Size window.
Ctrl-F12 Display the DrsAide window.

F12 Display the current edit dialog (i.e. bring it to the front).

Control creation

When any of the keys in this section are pressed, a new control of the specified type is created centered on the
current pointer position. Note that the uppercase character in the description of the control is the mnemonic for

the control .

Alt-A pAint control
Alt-B Billboard control
Alt-C Check box control

Alt-D combo-box control (i.e. Drop-down listbox control)

Alt-E single-line Edit control
Alt-F Frame control

Alt-G Group box control

Alt-H canvas (i.e. Holder) control
Alt-I Icon button control

Alt-J turtle control

Alt-K bitmap control

Alt-L List box control

Alt-M Multi-line edit control
Alt-O cOntainer control

Alt-P Push button control
Alt-Q marQuee control

Alt-R Radio button control
Alt-S Spin button control

Alt-T Text control

Alt-U User defined control
Alt-V Value set control

Alt-W bagbutton control

Alt-X horizontal scroll bar control
Alt-Y vertical scroll bar control
Alt-Z slider control

13

Alt-[rectangle control
Miscellaneous

F2 Save the current set of dialogs in the file they were loaded from.

Alt-F2 Save the current set of dialogs in a file you select using the file prompt dialog.

F3 Load an existing set of dialogs into the editor using the file prompt dialog to select the file to be loaded. If any
changes have been made to the current set of dialogs, you will be prompted whether you wish to save the changes
prior to loading the new file.

F5 Run the current DrRexx application under control of DrDialog. The Run- time window will appear and the
application will automatically begin execution. If the Auto-save option has been enabled, the current set of
dialogs will be saved to a file prior to beginning execution of the application.

q Quit (i.e. exit) DrDialog. If any changes have been made to the current set of dialogs, you will be prompted
whether you wish to save the changes prior to terminating DrDialog.

/ Toggle the current viewing mode between edit and view mode (see the View tool for more information).

14

Tools window

¥| Tools
|| = = Ly
P v Z | = [ramel Y L

92
Br2EBHE Eed®

Tools window

The tools window is a foolbar (i.e. array of iconic buttons). Each button in the toolbar either activates another
editor tool window or performs an action global to the operation of the editor.

When a button representing a tool window is clicked, the corresponding tool window is displayed in the position
it last had.

As an alternative to using the tool window, all of the same functions are also available using the Tools submenu
of either the DrDialog menu bar or the pop-up menu.

To learn more about the function of a particular tool window button, double- click on the image of the button
displayed in the other window.

Help tool

2]

Clicking the help button causes this document to be displayed.

About tool

2

Clicking the about button causes the DrDialog logo window to be displayed :

15

Terleicalorgy = MK Irobveeral W Only | Versicn 108 - A2 4084] |

Caed |':—-' ' .'I. S
'_I-/ll_l' '_I-/ll_ll e |

5 T T T =
Lreated [I bavid

P I--I .
. Harrlil

M i

E
e
L T

o | c—p———

Lo} Copyrlght IBM Corporakion 1193
Ml rigits reseryed
o) e e e e e

2

View tool

O

Clicking the view button toggles all dialogs being edited between edit and view mode. In edit mode (the initial
mode of the editor), each dialog control is drawn with a dashed line surrounding it to indicate the bounds of the
control. In addition, one or more grab handles are drawn for use in sizing and selecting the control . A typical

dialog in edit mode might appear as follows:

In view mode, each dialog control appears as it would in normal use, with no additional lines or grab handles
drawn over it. Note however that the grab handles are still logically there, and may be used in exactly the same

> | Program Options

:J Al A A A A A A A A A A A A A A A A A A A_d 4 A

4 N WFRFT]
oy Options 1
ol Wt

1
1aa! T
'11: W4 a
'JJI Prpr
UFpF| T
1ga' W4 a
'11: TFRFY
UFPF] T
1ga' o4 4
'11:)
:JJI Prpr
rir] WFRFT]
. > FIFT

manner as edit mode. A typical dialog in view mode might appear as follows:

> | Program Options

ddddddddddddddddddddddddddddd
a4 4 . |
a4 4 D M 4 4
a4 ptions
raF| FRF |
a4 4 M 4 4
a4 4 & M o4 4
4 [J
a4 4 G M 4 4
a4 4 r M 4 4
4 4 BFRF |
a4 4 M o4 4

- =

FIF e {':-" TFIF
a4 4 E M o4 4
raF| FRF |
a4 4 M 4 4
a4 4 M 4 4
4 4 For|
oo oA oA oddddddddddddddddddddddd

16

Grab tool

Clicking the grab button activates grab mode. In grab mode the mouse pointer changes to a pointing hand.
Positioning the pointer over any dialog frame, menu or control currently on the screen and dragging it with button
2 into the editor will import the specified object directly into the editor.

Based on what you grab, there are several possible results:

olf you grab the frame of a dialog, the entire dialog and all of its controls , menus and submenus will be imported
into the editor as the new current edit dialog.

olf you grab a control, the control will be added to the current edit dialog at the point where you release button 2.
If the drag outline does not intersect the current edit dialog when button 2 is released, a beep sounds and the
control is not added to the edit dialog.

olf you grab a menu bar, the menu and all of its submenus will become the current edit dialog's menu. If the
current edit dialog already has a menu, you will first be prompted if you wish to replace it with the menu you just
grabbed. If the grabbed menu becomes the current edit dialog's menu, the Menu window is automatically
displayed to allow you to edit the menu just imported.

If you decide not to grab anything once in grab mode, click button 1 of the mouse to exit grab mode without
taking any action. Note however that you will receive an informational message indicating that you should use
button 2 to drag the desired object.

Note: If you attempt to grab something that cannot be copied, the editor will beep and exit grab mode without
taking any action.

Dialog load tool

-

The dialog load button loads a resource (i.e. .RES) file containing one or more dialogs into the editor. If any
changes have been made to the current set of dialogs, you will be asked if you wish to discard the changes and
proceed with loading a new resource file.

A standard file dialog will be displayed. Enter the name of the file to be edited and press Enter, or click on the
Open button to continue. Alternatively, you can click on the Cancel button to return to the editor without loading
a new resource file.

If the selected file exists and is a valid resource file, the dialogs it contains will be loaded into the editor for
further editing. The editor will automatically select the first dialog found in the file as the current dialog.

If, in addition, the resource file was last edited using DrDialog, any symbols assigned to controls or dialogs will
automatically be loaded into the editor . If the file was last edited using a different dialog editor (e.g. DLGEDIT),
DrDialog will check for an include file with a .H extension in the same directory as the resource file being loaded.
If the file exists, the editor will use any #define statements found in the .H file to define symbolic names for the
controls and dialogs found in the resource file.

17

If no corresponding .H file is found, and the Prompt for .H file (if necessary) option was checked in the file open
dialog, DrDialog will prompt you for the name of the include file containing the symbolic names. If the option
was not checked, the resource file will be loaded with no symbolic names initially defined.

Note: An existing resource file can also be loaded into the editor by selecting the Open... option from the File
submenu of the DrDialog window menu bar.

Dialog save tool

E}

The dialog save button saves information about the current set of dialogs into one or more files.

A standard file dialog will be displayed. Enter the name of the file to be used for saving the dialogs. You should
also specify what type of dialog information is to be saved, and for what language, using the check boxes and
radio buttons located near the bottom of the file dialog. The available choices for type of information to be saved
are:

Resource Save the current dialogs in the OS/2 standard binary .RES file format.

Dialog Save the current dialogs in the OS/2 standard text .DLG file format .

Equates Save the name and ID information for the current dialogs in a format suitable for use with the selected
language. For C or C++, this is a .H file containing statements of the form: #define name ID. For Oberon, this is
a . DEF file containing CONST's of the form: name* = ID;.

WinProc Not currently implemented (has no effect).

Note: When entering the name of the file to be saved, it is not necessary to specify the file extension. A file
extension will be provided for each type of information to be saved:

.RES For resource files
.DLG For dialog files

.H For C or C++ equate files
.DEF For Oberon equate files

Once the file name has been entered, and the type of information to be saved has been specified, press Enter or
click on the Save button to continue saving the requested files. Alternatively, you can click on the Cancel button
to return to the editor without writing any files.

Note: The names associated with the dialog controls are save as a special resource type within the .RES file. This
allows the names to be recovered the next time the resource file is loaded into the editor. Editing the dialog with a

different dialog editor may cause the names assigned to the various controls and dialogs to be lost.

Note: The current set of dialogs can also be saved to a file using the Save or Save as... options in the File
submenu of the DrDialog window menu bar.

Stop tool

o

18

Clicking the stop button terminates DrDialog.

If a resource file with unsaved changes is being edited at the time the stop button is clicked, you will be prompted
first to verify that you wish to discard the current file before terminating the editor.

Controls window

The controls window shows all the controls that can be created using DrDialog . To create a control of a
particular type, use button 2 of the mouse to drag and drop from the icon representing the desired control to the
location in the edit dialog where you want to place the control. Once the control has been created, it will
automatically be made active for sizing or other editing operations.

To learn more about the individual controls that can be created using the controls window, double-click on the
image of the icon displayed in the other window .

Controls window

»| Controls
P] ®

Text

h
I

O

DlEd-l-ri"i—,E

[_J
=

B sz M)

= —

Group window

19

] IS

Group window

The group window is a collection of tools for aligning, sizing, spacing, hiding, showing, deleting and setting the
styles of groups of controls. It consists of an array of iconic buttons which operate either on the group of currently
selected controls or controls contained within the currently selected control.

Note: In the case of the Show controls button, it operates on the group of currently hidden controls.

The set of functions available through the group window is also available through the Group submenu of either
the DrDialog window or the pop-up menu.

To learn more about the function of a particular group window button, double- click on the image of the button
displayed in the other window.

Left align controls

|-
—

Clicking the left align button aligns all currently selected controls flush with the left edge of the current active
control.

~| Program

I Button 1 |
I Button 3 |

[T

For example, before:

20

~| Program |

[T

and after:

If only one control is selected, and it is a container control, all the controls it contains are aligned with the left
margin of the container. The left margin of the container is inset from the left edge of the control by an amount
dependent upon the type of container control.

~ | Program
FGroup —— L
.| Check 1
: .| Check 2} %
.| Check 3 |
For example, before: - - -
~| Program |
MGroup — L
.| Check 1 ;
" Check 2 | "
.| Check 3|
and after: - - -

Bottom align controls

Clicking the bottom align button aligns all currently selected controls flush with the bottom edge of the current
active control.

~| Program |

Button 3
T Bution3
Button 1

For example, before:

¥| Program |

| Button 1 E——[-———!Butl(m 5 I Button 3

and after: O

If only one control is selected, and it is a container control, all the controls it contains are aligned with the bottom
margin of the container. The bottom margin of the container is inset from the bottom edge of the control by an
amount dependent upon the type of container control.

~| Program |
mGroap S s .
Jtheck 11 [CjCheck 3’
JCheck 2, —==mmmmm
a
For example, before: O

¥| Program

A

|

and after:

Right align controls

2

J—

—

Clicking the right align button aligns all currently selected controls flush with the right edge of the current active
control.

~| Program

I Button 1 _
I Button 3 _

[T

For example, before:

22

~| Program |

[T

and after:

If only one control is selected, and it is a container control, all the controls it contains are aligned with the right
margin of the container. The right margin of the container is inset from the right edge of the control by an amount
dependent upon the type of container control.

~ | Program
FGroup —— L
.| Check 1
: .| Check 2} %
.| Check 3 |
For example, before: - - -
~| Program |
MGroup — L
| Check 1 ;
" .| Check 2 ;%
,|Check 3|
and after: - - -

Top align controls
L

Clicking the top align button aligns all currently selected controls flush with the top edge of the current active
control.

~| Program |

Button 3
T Bution3
Button 1

For example, before:

23

¥| Program |

I Button 1 EEE:QDE! I Button 3

If only one control is selected, and it is a container control, all the controls it contains are aligned with the top
margin of the container. The top margin of the container is inset from the top edge of the control by an amount
dependent upon the type of container control.

and after: O

~| Program |
mGroap S s .
Jtheck 11 [CjCheck 3’
JCheck 2, —==mmmmm
a
For example, before: O

¥| Program |

|

and after:

Horizontally center controls

s

Clicking the horizontally center button aligns the horizontal midpoint of all currently selected controls with the
horizontal midpoint of the current active control .

~ | Dialog |

| Button 1

E Butt:0n2 !

| Button 3

]

For example, before:

24

~| Dialog |

| Button 1

E Butt:onz !

| Button 3

If only one control is selected, and it is a container control, the horizontal midpoints of all controls it contains are
aligned with the horizontal midpoint of the container.

and after: O

~ | Dialog
MGop -~ .
| Button 1
1% L Button 2 5
L Button 3
Wi [i
For example, before: 17
¥| Dialog |
Feop——— =
- Button 1
= L Button 2 "
L Button 3
n i m _J
and after: =

Vertically center controls

U

Clicking the vertically center button aligns the vertical midpoint of all currently selected controls with the
vertical midpoint of the current active control.

25

For example, before:

and after:

If only one control is selected, and it is a container control, the vertical midpoints of all controls it contains are
aligned with the vertical midpoint of the container.

For example, before:

26

-

and after:

g
|
-

Horizontally space controls

.
1)

Clicking the horizontally space button spaces all currently selected controls evenly horizontally. Evenly means

that the amount of space between each control is the same.

There are three different cases to consider:

Case 1: There exists a horizontal line that intersects both the active control and at least one other selected
control. In this case the leftmost and rightmost controls act as anchors and all the other controls (including the

active control) are spaced evenly between them. The spacing will preserve the original relative ordering between

the controls.

~| Program Options

]

For example, before:

~| Program Options

|

and after:

Case 2: There is no horizontal line that intersects both the active control and at least one other selected

control. In this case the active control acts as an anchor and all the other controls are spaced evenly between the

left and right ends of the active control. The spacing will preserve the original relative ordering between the

selected controls.

27

~| Program Options |

]

For example, before:

~| Program Options |

LButtnn 1 LButton 2 LButton 3

|

and after:

Case 3: Only one control is selected, and it is a container control . In this case, all the controls inside of the
container are spaced evenly between the left and right margins of the container. The left and right margins of the
container are inset from the left and right edges of the container by an amount dependent upon the type of
container control. Note that the spacing is performed separately for each group of vertically aligned controls
within the container. While this may sound complicated, it actually facilitates the rapid alignment of arrays of
controls within a container (try it, you'll like it!).

~| Program Qptions |

=Group L ERREREEEEEEEEERRR »
.| Check 1i[,ICheck 21 |]Check 3|
|

]

For example, before:

¥| Program Options |

=Group s =
L/ Check 1} [1Check 2} [,1Check 3 |
a

-1

and after:

Vertically space controls

Iz

Clicking the vertically space button spaces all currently selected controls evenly vertically. Evenly means that the
amount of space between each control is the same.

There are three different cases to consider:

28

Case 1: There exists a vertical line that intersects both the active control and at least one other selected

control. In this case the topmost and bottommost controls act as anchors and all the other controls (including the
active control) are spaced evenly between them. The spacing will preserve the original relative ordering between

the controls.

For example, before:

¥| Program |

|

¥ | Program

,JCheck 1

BIChick 23

I Check 3
and after:

Case 2: There is no vertical line that intersects both the active control and at least one other selected

control. In this case the active control acts as an anchor and all the other controls are spaced evenly between the

top and bottom ends of the active control. The spacing will preserve the original relative ordering between the

selected controls.

For example, before:

~| Program Options

]

| R

-

¥| Program Options

and after:

[T

il

% LiCheck 1!

oW ____
i)
)
=
o
o
=
M

29

Case 3: Only one control is selected, and it is a container control . In this case, all the controls inside of the
container are spaced evenly between the top and bottom margins of the container. The top and bottom margins of
the container are inset from the top and bottom edges of the container by an amount dependent upon the type of
container control. Note that the spacing is performed separately for each group of horizontally aligned controls
within the container. While this may sound complicated, it actually facilitates the rapid alignment of arrays of
controls within a container (try it, you'll like it!).

> | Program |
rGroup ———7F— =
b Check 1
w bJCheck 2 g
o Check 3 |
n]]
For example, before: 2

¥ | Program |

and after: [

Equal width controls

—
-
—(

Clicking the equal width button makes all currently selected controls the same width as the current active control.

~ | Dialog |
L Button 1
E Button 2 i
| B
L Button 3
For example, before: |

30

~| Dialog |
L Button 1
E Button 2 !
| B
L Button 3
and after: O

If only one control is selected, and it is a container control, all the controls it contains are made the same width as
the distance between the left and right margins of the container control. The left and right margins of the container
are inset from the left and right edges of the control by an amount dependent upon the type of container control.

~| Dialog
L
jBuﬂ0n1
5 Button 2 "
L Button 3
B B _u
For example, before: |
¥| Dialog |
A
Button 1
5 Button 2 o
Button 3
™ . |
and after: O

Equal height controls
[

Clicking the equal height button makes all currently selected controls the same height as the current active
control.

31

~| Dialog

L1

]
HEEEEEEEEEEEEEEEE R EEFEEEEEEE

K_
L

Bl

]

For example, before:

¥| Dialog |
B

]
B |

]
i i

- .

-

and after:

If only one control is selected, and it is a container control, all the controls it contains are made the same height as
the distance between the top and bottom margins of the container control. The top and bottom margins of the
container are inset from the top and bottom edges of the control by an amount dependent upon the type of
container control.

~| Dialog

| n
n

b

H =
whe

-

For example, before:

32

~| Dialog |
FGroup e e
~ R =
| J |
|
; I r
| | |
' | |
|
L | ML]
and after: i i

Same style controls

()

Clicking the same style button makes all currently selected controls have the same attributes as the current active
control.

The attribute information copied from the active control to each selected control consists of:
oColor
oFont

oStyle (as set in the active control's pop-up style dialog)

Note: The style information is copied to a selected control only if it is the same type of control as the active
control. The color and font information is copied to a selected control only if the selected control can accept it.

| | Check !
R .
Text :
o .

For example, before:

" Push

and after:

33

Hide controls

J—

=l

Clicking the hide button hides the currently selected controls in the edit dialog. Note that the controls are not
deleted, but are simply hidden. This can be useful if you are trying to operate on a control which is being obscured
by other controls in front of it.

-.,.J|
All hidden controls can be made visible again by clicking on the —l button.
Note: If the currently selected control is the dialog itself, the entire dialog is hidden. To make it visible again, it

must be selected for editing using the Dialog select window.

Show controls

L]
-.*.J

=

Clicking the show button shows all controls within the current edit dialog that were previously hidden using the

o

]
====41 button.

Delete controls

X

Clicking the delete button deletes the currently selected controls from the edit dialog. If no controls are currently
selected, no action is taken. If the dialog itself is selected, you will be prompted whether you wish to delete the
entire dialog or not.

Pressing the Del key on the keyboard while the current edit dialog has the focus also has the same effect as
pressing the delete button.

Size window

¥| Size and Position |

Units:
254 X | 540) Y [e pels

272/ DX | 160 DY | () Dialog

0K | Cancel

34

Size window

The size window displays the location and size of the currently active control. The location displayed is of the

lower-left corner of the control.

You can specify the units as either pels or dialog units by checking the appropriate radio button.

You can also change the location and/or size of the control by editing the contents of the appropriate fields and
either pressing Enter or clicking on the OK button.

Clicking the Cancel button will copy the active control's current location and size information back into the entry

fields, discarding any changes you may have made.

If no control is active, the size window will be disabled.

ID window

>| ID

-Location
| Lower-left

|| Upper-right

-Size Id
| Width | Name
| Height v D

ID window

Selecting the ID tool modifies the display of all dialogs being edited to show information about each control
instead of the image of each control. The resulting display will look something like the following:

~| Program Options

| g ___ £327_1
- . (215,159)5:”
1201301415 0]
16017 118 119 1
bbb
W _____ ;__________ a

Container controls are shown in yellow, and all other controls are shown in white.

35

All normal editing actions (e.g. moving, sizing, changing view mode) are still available while the ID tool is active.
All edit dialogs will return to their normal display mode when the ID tool window is closed.

The check boxes in the ID tool window specify what information is to be displayed within each control. The
choices are:

Lower-left Display the coordinate of the lower-left corner of the control in the lower-left corner of the control.
Upper-right Display the coordinate of the upper-right corner of the control in the upper-right corner of the control.
Width Display the width of the control in square brackets in the center of the control.

Height Display the height of the control in square brackets in the center of the control.

Name Display the name of the control in the center of the control.

ID Display the ID of the control in the center of the control.

If both width and height are checked, they are displayed in the form: [width,height].
If both name and ID are checked, they are shown in the form: name=ID .

If there is not enough room in a particular control to display all of the requested information, only the information
that will fit is displayed. The information is prioritized so that lower priority information is removed first. From
high to low, the priority order is as follows:

olD

oName
oWidth/Height
oLower-left
oUpper-right

Name window

Hame: | Help
ID: 103

100 = MyDialog [DIALOG] (1=)]
101 = OK [PUSHBUTTON] (1%)

102 = Cancel [PUSHBUTTON] (1%)
103 = Help [PUSHBUTTON] (1x)
104 [TEXTBOX] (1)

105 = List [LISTBOX] (1%)

106 = Entry [ENTRYFIELD] (1)

107 [VSCROLLBAR] (1)

Name window

The name window lists the ID and optional name of each control in the edit dialog, including the dialog itself.
The name window is actually the first page in the Events section of the DrRexx notebook. The list box displays
each control in the form: ID = name [type] (count*), where name is optional, type is the type of control (e.g.
PUSHBUTTON), and count is the number of controls in the resource file with the same ID. If a '*' is present

36

after count, it indicates that one or more control specific REXX handlers have been written for the control.

The currently active control (if any) is always selected in the list box. Selecting a new entry in the list box will
also select a new active control in the edit dialog. The name and ID of the active control can also be changed by
editing the values in the two entry fields at the top of the name window and then pressing Enter to make the
change.

Note: ID's must be unique within a dialog. Names must be unique within a resource file. If you enter a
non-unique name, the editor will automatically append a numerical suffix to make it unique. If you enter a
non-unique ID, the editor will automatically replace it by the next available unique ID.

If you enter an ID used in a different dialog, and the name field is blank, the control will be assigned whatever
name is currently attached to the ID in the other dialog. If the name field is not blank, all controls with the same

ID will be assigned the new name.

The name and ID of a control can also be set using the Name... and ID... options of the pop-up menu.

Text window

¥| Text |
+

16 |5/ Helvetica EQQQ
Push

OK | Paste |Cancel

1%

Text window

The text window allows you to specify the window text and font for the currently active control. When a control
is made active, its current window text and font information is copied to the edit fields of the text window.

To change the control's window text, edit the entry field and press Enter or click on the OK button.
To change the control's font:

oSelect the font family from the drop-down list in the middle

oSelect the point size using the spin button on the left

oSelect the style (i.e. normal, bold, italic or bold italic) using the style buttons on the right

oClick the OK button or press Enter to make the font change.

Clicking the Cancel button will copy the active control's current window text and font information back into the
text tool's edit fields, discarding any changes you may have made.

Clicking the Paste button will copy the current contents of the clipboard into the entry field and also make it the
control's new window text. If no text is in the clipboard, the editor will beep.

37

If no control is active, or the active control does not have a text field, the text window will be disabled.
If the active control has text, but no font information, the font selection controls will be disabled.

The text and font of a control can also be set using the Text... and Font... options of the pop-up menu.

Color window

> | Color
Background color

Foreground color
Border color |

Brown

| Default | Original

Color window

The color window allows you to specify the colors to use for the current active control. When a control is made
active, its list of color attributes and color information is copied to the edit fields of the color window.

To change the active control's colors:

oSelect an attribute from the list of color attributes defined for the active control (e.g. Background color). The
color palette will be updated to show the color currently being used for that attribute (if it is known).
oSelect a new color from the palette of available colors

To restore the active control's colors back to their default values, click the Default button. To restore the active
control's colors back to the values they had when the control was first selected, click the Original button.

Note: Not all control types have the same color attributes. Some control types do not have any defined color
attributes (e.g. ICONBUTTON). If a control with no color attributes is made active, the color tool is disabled .

Normally the color tool displays a color palette consisting of 16 default colors. However, if the color tool is sized
large enough vertically, an additional 40 colors are added to the palette (for a total of 56 colors). The new colors
are the colors used by PM to draw specific display items (e.g. Window static text), and correspond to the colors
that can be specified using the system scheme editor. If you select colors from this extended portion of the color
palette, your controls will automatically use whatever color is in effect for that particular logical color. That is, if
another user's color scheme is different than yours, your controls will automatically use the color scheme in effect
for that user when your dialog is displayed on that user's system).

The text control located below the color palette displays the name of the color currently being pointed at, and can
be used to locate a particular logical color in the palette.

38

When used in conjunction with the same style tool, the color tool can be used to set the colors for an entire group
of controls quickly and easily:

oFirst, select the group of controls whose colors are to be set.
oSecond, use the color tool to set the colors for the active control in the group.

oFinally, click the m button to copy the color information from the active control to all other selected
controls in the group.

Note: The size of the color tool, and hence the number of colors displayed in the palette, is a user preference item
and is automatically saved acrooss DrDialog sessions.

The foreground and background colors of a control can also be set using the Colors... option of the pop-up menu.

DrRexx window

| DrRexx |

CALL AddDigit 7 it

Nl
[mi

]
G

= > |
Y| Find -> | ||<- Switch| control

]+ |

! n! !/ R
] | L
il

;.

161 [PUSHBUTTON] .

DrRexx window

The DrRexx window is actually a notebook with several major sections:

oREXX event handlers for each defined control

oREXX procedures defined globally for the current resource file

oA notepad of REXX code fragments or other useful pieces of information

For more detailed information on the use of the DrRexx notebook, refer to the DrRexx section.

For more information on the events defined for each type of control, refer to the controls section.

39

Drop-down menu window

¥| Menu
Files Edit
st B cut ~ | - Attributes:——

Files [Checked

Paste | Disabled
| |

Text:

Label: ~Insert:

Copy Copy
Action: CALL CI iphuard J

‘@ | Sub-menu

Cancel | Separator
’7' L
Delete [RN

Menu ltem

Drop-down menu window

The drop-down menu editor window allows you to define and edit the contents and actions for the drop-down
menu, if any, associated with the current dialog.

The drop-down menu editor uses a series of listboxes to display the structure of the drop-down menu being edited.
It also displays a version of the actual menu at the top of the editor window so you can verify that the menu has

the desired structure and appearance.

The left-most menu editor listbox displays the items at the top-most level of the drop-down menu structure (i.e.
the items on the menu bar). Only submenus can be added to the menu bar.

The middle listbox displays the menu items for the drop-down menu currently selected in the left-most listbox,
while the right-most listbox displays the menu items for the submenu currently selected in the middle listbox. If
the left-most or middle listboxes do not have a submenu selected, then no items are listed in the middle or
right-most listbox respectively.

The menu item currently being edited is always the right-most selected entry within the three listboxes.

Note: The topmost entry in each listbox is always _1st_. This entry is not an actual menu item, and so cannot be
modified. Its purpose is to provide a way of inserting a menu item as the first entry in a menu bar or submenu.

There are three types of entries that can be inserted into a drop-down menu structure:
oMenu item
oSubmenu

oSeparator

A menu item can be either selectable or non-selectable (i.e. static) . A menu item is selectable if it has some

40

REXX code associated with it. The REXX code associated with a menu item is entered into the Action multi-line
edit control. If a menu item has no REXX code associated with it, then it is static and cannot be selected.

A submenu defines the entry point to a submenu. It has no REXX code associated with it, but is selectable
(selecting it causes its submenu to be displayed) . A submenu can also be used as a pop-up menu when invoked
using the MenuPopUp menu function.

A separator is simply a horizontal bar that separates other menu items. It has no REXX code associated with it
and it cannot be selected.

Initially, a dialog has no drop-down menu. All of the listboxes are empty except for the left-most, which has a
1Ist entry. The only type of menu entry that can be added to the top-level of a drop-down menu is a submenu.

To create a new submenu:

oSelect the entry in the listbox you want the submenu inserted affer (initially this can only be the _1st_ entry).
oType the text describing the submenu into the Text field.

Note: A '~' character preceding a character in the text defines that character as a keyboard accelerator for that
menu entry.

oEnter an optional label for the submenu entry into the Label field. Labels are used to identify menu entries when
using the DrRexx menu functions.

Note: Menu labels need not be unique within a drop-down menu. A menu function applied to a particular label
operates on all menu items with that label.

oSet the Check and Disabled check boxes to indicate the desired initial state of the submenu entry (i.e. checked
or not checked, disabled or not disabled) .

oClick the submenu button to insert the submenu entry into the drop-down menu after the currently selected
menu entry.

The process for inserting menu items or separators is very similar.
To insert a new menu item:

oSelect the entry in the listbox you want the menu item inserted after. Menu items can only be inserted after menu
entries in the middle or right-most listbox.
oType the text describing the menu item into the Text field.

Note: A '~' character preceding a character in the text defines that character as a keyboard accelerator for that
menu entry.

oEnter an optional label for the menu item into the Label field. See the previous description of inserting
submenus for an explanation of the use of labels.

oSet the Check and Disabled check boxes to indicate the desired initial state of the menu item (i.e. checked or not
checked, disabled or not disabled).

oEnter the REXX code to be executed when the menu item is selected into the Action multi-line edit control. If
no REXX code is entered, the menu item will be static (i.e. non-selectable).

oClick the Menu Item button to insert the menu item into the drop-down menu after the currently selected menu
entry.

To insert a new separator:

oSelect the entry in the listbox you want the separator inserted after. Separators can only be inserted after menu

41

entries in the middle or right-most listbox .
oClick the Separator button to insert the separator into the drop-down menu after the currently selected menu
entry.

Once a menu entry has been added to the drop-down menu, it can modified or deleted.
To modify an existing menu entry:
oSelect the entry to be modified in the appropriate listbox.

Note: In the case of a second or third level menu entry, this may require selecting its parent submenus first. You
can also back up to an already selected parent submenu by double-clicking its listbox entry.

The Text, Label, Action, Checked and Disabled fields will be updated to reflect the current values for the
selected menu entry.

Alternatively, if the desired entry is a menu item, it can be selected directly from the actual version of the menu at
the top of the menu editor window.

oChange the Text, Label, Action, Checked and Disabled fields to reflect their new values.

oClick the Replace button to make the changes to the menu entry. Alternatively, you can simply select another
menu entry; the previously selected menu entry will automatically be updated with the values of the Text, Label,
Action, Checked and Disabled fields prior to displaying the new menu entry's values.

To delete an existing menu entry:

oSelect the entry to be deleted (see the previous description of modifying menu entries for more information on
how to do this).

oClick the Delete button to delete the menu entry.

To correct an editing error:

oClick the Cancel button and the Text, Label, Action, Checked and Disabled fields will be restored to their last
saved values.

Run-time window

~| Run-time monitor

Off Yariables:

114
114

114

(=

SAY dialog.button.Position()
36 42 84 22

+

il

Ll

S
© J

42

Run-time window

The run-time window allows you to run the DrRexx application currently being edited under control of the editor.

DrDialog operates in one of two modes: edit mode or run mode. In edit mode you can freely make changes to any
of the dialogs contained in the current resource file. This is the mode in which most of the DrDialog tools operate.

Using the run-time window, you can tell the editor to enter run mode. In run mode, all of the editing functions of
the editor are disabled so that you can test the actual behavior of the your application.

Run mode is entered by clicking the J button in the run-time window. When you do this several things
happen:

0All editing tool windows are hidden, including the current dialog being edited.
0All of the controls in the run-time window are enabled.

oYour DrRexx application is started.

You can stop execution of your DrRexx application at any time by clicking on the @ button (which replaces

the button when you enter run mode.

While you are in run mode, your application behaves exactly the way it would when running outside of the
DrDialog environment (i.e. when running under control of the stand-alone DrRexx environment). In addition, you
can use the various tools of the run-time window to help you debug your application. For more information on the
function of the various run-time window tools, double-click on the appropriate areas of the figure to the left.

If your application requires command line arguments, you can specify them by entering them into the entry field
of the run-time window prior to starting execution of your application. Alternatively, if you have previously
entered the arguments, you can also select them into the entry field using the drop-down list. Whatever text is in
the entry field when the application begins execution is passed to it as its command line arguments.

Note: If you wish, you can have DrDialog automatically save the current set of dialogs you are editing to a file

each time you click the J button. This can prevent you from losing editing changes if your application
causes DrDialog to crash (e.g. your application calls an external function with invalid arguments).

To enable this feature, first select Options... from the Options submenu of the DrDialog menu bar. Then check
the Save before running program check box in the Auto save section of the dialog that appears. You may also
specify the name of the file to save the current set of dialogs in before running your program. If you do not
specify a file name, the dialogs will be saved in the same file they would have been saved in if you had selected
the Save option from the File submenu of the DrDialog menu bar.

43

Dialog select window

~| Dialog |
— New — J
100 = MyDialog

300

400 = ExitDialog

Dialog select window

The dialog select window lists the ID and optional name of each dialog in the current resource file being edited.
The list box displays each dialog in the form : ID = name, where rame is optional.

Double clicking an entry in the list box selects the corresponding dialog for editing. Double clicking the --- new
--- entry at the top of the list box creates a new, empty dialog.

Note: A dialog can be given a symbolic name by selecting the dialog for editing and either changing its entry in
the name window or by using the Name.. . option of the pop-up menu.

44

Background window

The background window is a backdrop for all other DrDialog windows. It can be made full screen to separate
DrDialog's windows from all other application windows; or it can be made small to allow quick access to other
applications on the desktop.

The background window also allows DrDialog to be minimized if desired.

At the top of the background window is the DrDialog menu bar. The menu bar provides access to the following
editor functions:

File This submenu provides options for loading and saving new or existing resource files

Tools This submenu provides access to the same set of editor tools available through the Tools window and the
Tools submenu of the pop-up menu.

Controls This submenu allows any DrDialog control type to be added to the current edit dialog. It provides the
same palette of controls available through the Controls window and Controls submenu of the pop-up menu.

Group This submenu provides access to the same set of group manipulation tools available through the Group
window and the Group submenu of the pop-up menu .

At the bottom of the background window are two controls that describe the DrDialog window and control
currently pointed at. The leftmost control gives a brief description of the window the pointer is currently in, while
the rightmost control describes the function of the control the pointer is currently over. If the pointer is over an
edit dialog, the rightmost control displays the ID number, name, type and hint text for the control pointed at in the
form: ID = name [type] ' hint', while the leftmost control identifies the edit dialog as being active or inactive.
Both controls are automatically updated as you move the pointer around the screen.

x| MAckaqronnd pattern

Bitmap: uuugq

Ind §
o |

- -

"

I(ffd.'

-

.'__‘l

.
e

= _:,:.. =

o]
N

Rkt

The design displayed in the background window is user selectable. To change it, click button 2 while the pointer
is anywhere over the current background window pattern. A pop-up window will appear displaying a list of
available background patterns. Scroll through the list until an interesting design appears, then click on it with
button 1 to make it the new background. If you are not satisfied with the result, you may scroll through the list

45

and select another design.

If the background pattern you would like to use is in a separate .DLL or .BMP file, you may also type its name
into the entry field at the top of the dialog, then click the Set button to make it the new background pattern. For a
bitmap in a .DLL, the name should be of the form: dliIName:#resourceld (e.g. MYBMPS:#4). For a bitmap in a
.BMP file, simply type in the complete file name (e.g. C:\MYBMPS\MYCAT.BMP) . Note that the file
extension must be .BMP.

Once you are satisfied with the background pattern, you may close the pattern pop-up window using its system
menu.

The size, position and pattern for the background window is saved as part of the user preferences for DrDialog.

46

Managing your DrDialog workspace

Because of the many tools provided by DrDialog, your desktop (workshop?) can easily become cluttered with
windows. To help control this clutter, DrDialog provides several ways for you to organize and manage your tool
windows:

oUse the pop-up menu or DrDialog menu bar whenever possible. The pop-up menu especially provides quick
access to most editor functions, and any dialogs it displays are popped up near the pointer and are removed
automatically as soon as you are done using them.

oDrDialog automatically remembers the position and size of each tool window . Each time a tool is invoked, it
will appear at the same location and with the same size it had the last time you used it.

oTool windows can be opened automatically at the beginning of each editor session if desired. The system menu
of each tool window contains an Auto open option. If this option is checked, the associated tool window will
automatically be opened at the start of each edit session if the Auto hide option for the window is rot checked. If
the option is not checked, or the Auto hide option is checked, the window will not be opened until requested. To
change the current setting of the Auto open option, simply select it from the tool's system menu. The setting is
automatically remembered across editing sessions and so only needs to be set once.

oTools can automatically be hidden when they are not being used. The system menu of each tool window contains
an Auto hide option. If this option is checked, the associated window is hidden whenever another tool window or
the background window is selected, or the pop-up menu is displayed. If this option is not checked , the tool
window is left visible until explictly closed. To change the current setting of the Auto hide option, simply select it
from the tool's system menu. The setting is automatically remembered across editing sessions and so only needs
to be set once.

Note: Selecting an edit dialog will not cause a tool window to be hidden, even if Auto hide is active for the tool.
The tool window will only be hidden if another tool window or the background window is selected, or the pop-up
menu is displayed.

A tool window that has been automatically hidden can be redisplayed simply by clicking its corresponding button
either in the tools window or the Tools submenu of the DrDialog menu bar or pop-up menu.

oTools can either float above the dialog being edited or drift to the bottom of the window stack. If the Float
option of a tool's system menu is checked, the tool window will always float above the dialog currently being
edited, even if the edit dialog is given the focus. If the Float option is not checked, the tool window will drop
behind the current edit dialog whenever the edit dialog receives the input focus. To change the current setting of
the Float option, simply select it from the tool's system menu. The setting is automatically remembered across
editing sessions and so only needs to be set once.

47

48

Invoking DrDialog

The syntax for invoking DrDialog is:

DrDialog [-p[iniPath]] [resourceFile]

where:

iniPath Optional path name used to locate the DRDIALOG.INI user preference
profile

resourceFile Optional name of a .RES resource file to be loaded into the
editor at startup. If the file name contains special characters (e.g.
blanks) it should be enclosed in double quotes (e.g. 'My Application
Dialogs').

If the -p option is not specified, the editor will check to see if the
system profile contains the path name to use for locating your user
preference profile. If it does, the specified path name is used. If it does
not, you will be prompted to enter the path name (i.e. directory) where
DrDialog should keep its user preference profile (DRDIALOG.INI). Once you
enter the path name, it will be stored in the system profile so that future
invocations of DrDialog will not prompt you for the path name.

Note: If -p is specified with no path following it, the current path stored
in the system profile will be deleted. You will then be prompted to enter

the new path name to store in the system profile. This case is useful if you
re -install or move the DrDialog files to a different drive or directory and
want to change the default location of the DrDialog user preference profile.

If resourceFile is specified, the editor will attempt to load the specified
dialog at startup. If resourceFile is not specified, the editor will
initially display an empty dialog with the same size and position as the
last dialog edited.

The first time DrDialog is run, the DrDialog logo screen will also be
displayed. From this screen you can either continue into the editor or
display the on -line help. The logo will only be displayed automatically the
first time DrDialog is run. It can be also be displayed any time the editor
is running by clicking on the about button either in the tools window. or
the Tools submenu of the DrDialog menu bar or pop-up menu.

49

50

DrDialog and the Workplace Shell

DrDialog supports the OS/2 Workplace Shell as follows:
oResource files that have been edited with DrDialog but which have no DrRexx code associated with them will

Double clicking the icon will invoke DrDialog on the specified resource file . Dragging and dropping the icon on
the DrDialog icon will have same effect.

appear in a folder with the DrDialog data file icon :

oResource files that have been edited with DrDialog and which have DrRexx code associated with them will

appear in a folder with the DrRexx data file icon : g)

Double clicking the icon will invoke DrRexx on the specified resource file (i .e. will run the application).
Dragging and dropping the icon on the DrRexx icon will have same effect. Dragging and dropping the icon on the
DrDialog icon will invoke the editor on the specified resource file.

oNew, empty DrDialog or DrRexx resource files may be created by dragging and dropping the DrDialog or
DrRexx template icon from the DrDialog folder into any other folder.

DrDialog also includes two simple DrRexx applications: REStoPgm and REStoEXE which can help turn your
finished DrRexx application into a drag-and-drop Workplace Shell application or a standard OS/2 executable (i.e.
.EXE) file .

REStoPgm

The DrDialog package includes a simple DrRexx application called REStoPgm that turns your finished DrRexx
applications into drag-and-drop Workplace Shell applications.

To use REStoPgm just drag a DrRexx .RES file that you want to convert and drop it on the REStoPgm icon in
the DrDialog folder. REStoPgm will create a new program object in your desktop folder with the same name as
your original .RES file minus the .RES extension. Now, drag any file or other object that your DrRexx
application can process and drop it on the new program object. Your DrRexx application will be invoked with the
file or other object passed as the command line argument (i .e. your program can use PARSE ARG to retrieve it).

Of course, once the program object has been created, you are free to move it to a new location or rename it.
To demonstrate REStoPgm, try dropping the BmpList.RES icon in the DrDialog SAMPLE folder onto the
REStoPgm icon. A program object called BmpList should appear on your desktop. Now try dropping a folder

containing some .BMP files onto the new BmpList icon. The BmpList program should appear with all the .BMP
files in the folder you dropped on it listed.

51

REStoEXE

The DrDialog package includes a DrRexx application called REStoEXE that turns your finished DrRexx
applications into standard OS/2 executable (i.e. . EXE) files.

To use REStoEXE, just drag a DrRexx .RES file that you want to convert and drop it on the REStoEXE icon in
the DrDialog folder. REStoEXE will create an executable version of your DrRexx application in the same
directory as your .RES file and with the same name except for a .EXE file extension. REStoEXE will also create
a new program object in your desktop folder with the same name as your .RES file minus the .RES extension.

If an icon file exists with the same name as your DrRexx .RES file, but with a .ICQO extension, it will be used as
the icon for both the .EXE and program objects created by REStoEXE. If no icon file is found, the standard
DrRexx icon will be used instead.

Once REStoEXE has created the executable version of your program, you can invoke it simply by
double-clicking its program icon. If your application accepts a file as its first command line argument, you can
also drag any file or other object that your DrRexx application can process and drop it on the new program object
. Your DrRexx application will be invoked with the file or other object passed as the command line argument (i.e.
your program can use PARSE ARG to retrieve it).

Of course, once the program object has been created, you are free to move it to a new location or rename it.

To demonstrate REStoEXE, try dropping the BmpList.RES icon in the DrDialog SAMPLE folder onto the
REStoEXE icon. A program object called BmpList should appear on your desktop. Now try dropping a folder
containing some .BMP files onto the new BmpList icon. The BmpList program should appear with all the .BMP
files in the folder you dropped on it listed.

Note: The .EXE file created by REStoEXE is completely self- contained and does not require the DrRexx.EXE
program in order to run.

Note: REStoEXE requires that RC (i.e. Resource Compiler) be in your PATH.

52

DrRexx

DrRexx is a powerful feature of DrDialog which allows REXX code to be attached to a resource file created by
DrDialog. The resulting extended resource file is referred to as a DrRexx application.

The REXX code attached to a resource file defines actions associated with events that occur while the DrRexx
application is running (e.g. a pushbutton being clicked, or a drop-down menu item being selected). A DrRexx
application can either be run stand-alone, using the DrRexx run-time environment (DRREXX.EXE), or under
control of the DrDialog editor. The latter is an especially powerful tool since it allows the DrRexx application
developer to rapidly and iteratively develop an application by switching back and forth between edif and run
mode.

The DrRexx notebook

All DrRexx editing functions are accessed using the DrRexx tool window. The DrRexx window is displayed by

clicking on the -
major sections:

button in the tools window. The DrRexx window is organized as a notebook with three

The events section allows editing the REXX event handling code for the currently active control.

Name
‘ The global procedures section allows editing REXX procedures which are global to the entire application
source file).

~
=y
—
a

The notepad section allows editing common REXX code fragments or other useful pieces of information

Events section

53

DrRexx |

CALL AddDigit 7 Al

il
[mi;

1
[,

< >
Find -> || | <- Switch| Control

+|+ |

! ! o R
1%
C

g

161 [PUSHBUTTON] -

Events section

The events section of the DrRexx notebook allows you to define REXX routines to handle the various events
associated with each control in your application.

The cover page of the events section is also called the name tool, and displays a list of all currently defined
controls for the dialog being edited. Double-clicking any entry in the list will furn to the subsection of the
notebook defining the event handlers for the selected control. The name and numeric ID of the currently selected
control can also be changed by editing the corresponding entry fields at the top of the page and pressing Enter.

The control events subsection of the DrRexx notebook has a page for each event defined for the currently active
control. Selecting the tab for an event will display the REXX code associated with the event in the edit control
and allow it to be edited.

Note: From the edit dialog you can also get to a specified page quickly by selecting the matching event name
from the Events submenu of the pop-up menu for the control.

There are two types of handlers that can be defined for each event: control specific event handlers or class event
handlers.

A control specific event handler is a handler for an event that is specific to a particular control (e.g. do this action
whenever this specific pushbutton is clicked). This is the normal type of event handler.

A class event handler is a handler for an event that is generic to the class of the control (e.g. do this action
whenever any pushbutton in this dialog is clicked).

When an event occurs for a control, the DrRexx run-time environment does the following:

1.If there is a control specific event handler for the event, it invokes that handler and goes to step 4.
2.If there is a class handler for that event for that kind of control, it invokes that handler and goes to step 4.

54

3.If there is a handler for the Any event for the dialog containing the control, it invokes that handler and goes to
step 4.
4.1t waits for the next event.

The type of handler currently being edited is determined by the state of the spin button located in the lower right
hand corner of the event page. If the spin button has Control selected, the control specific handler is being edited.
If the spin button has Class selected, the class handler is being edited.

Note: The spin button also has two additional states (Events and Functions) which display different types of help
information about the currently selected control. When either of these two items is selected, the information in the
edit control is read-only.

When Events is selected, the edit control contains a list of the events that are defined for the currently selected
control with a brief description of each .

When Functions is selected, the edit control contains a list of the window functions that are defined for the
currently selected control.

The editor indicates which type of handler will handle an event for the currently active control by the trailing
character in the page tab for the event. If the trailing character is a '*', then the event will be handled by a control
specific event handler. If the trailing character is a '-', then the event will be handled by a class event handler. If
neither "*' nor '-' appears as the trailing character in the page tab, neither a control specific nor a class event
handler is defined for the event (although the event may still be handled by the Any event handler for the dialog).

Note: There is only one class handler per event for all controls of the same type within a dialog. Editing the class
handler for an event in one control changes the class handler for that event in all controls of the same type for that

dialog.

There is an exception to the above rule in the case of the Init event, which has no class handler. All Init event
handlers must be control specific. Any class handler defined for an Init event will be ignored.

Global procedures section

DrRexx |

Reset
Add o~

Yalue

[

AR

Al

Value | Reset | Add

55

Global procedures section

The global procedures section of the DrRexx notebook allows you to define REXX procedures which can be
called from other parts of your DrRexx application. The procedures are global because they can be called from
any dialog within the current resource file, not just the one currently being edited.

The cover page of the global procedures section displays a list of all currently defined procedures.
Double-clicking any entry in the list will furn to the notebook page defining the procedure and allow it to be
edited.

A new procedure can be added by typing its name into the entry field at the top of the page and pressing Enter. A
new, empty page with the name just entered will be added to the section and automatically selected so that you

can enter the code for the new procedure.

The global procedures section has a page for each global procedure currently defined. Selecting the tab for a
procedure will display the REXX code associated with the procedure in the edit control and allow it to be edited.

A procedure can be deleted by deleting all its code. The page defining the procedure will automatically be deleted
from the notebook when any other page is selected.

Notepad section

DrRexx |

SysLoadFuncs
ShowSource it

SysLoadFuncs

i i i o o o o o o o o o o o

[][]

Al

ShowSource {SysLoadFuncs

Notepad section

The notepad section of the DrRexx notebook allows you to keep track of handy fragments of REXX code or other
useful information. For example, many REXX programs make use of the standard RexxUtil functions, and so
must include the following lines of REXX code somewhere in the program:

56

CALL RxFuncAdd 'SysLoadFuncs', 'RexxUtil', 'SysLoadFuncs'
CALL SysLoadFuncs

Using the DrRexx notepad, this fragment of code can be assigned a name and
always be available for quick inclusion in any DrRexx application.

Note: Information in the DrRexx notepad section is associated with the
DrDialog editor, and not with the current resource file being edited. As
such, its contents are available in every editing session. As a corollary,
nothing in the notepad section is stored as part of a DrRexx application
resource file. To include something from the notepad in the application, it
must first be copied from the notepad into one of the event or global
procedure pages of the DrRexx notebook.

The cover page of the notepad section displays a list of the names of all
current notes. Double-clicking any entry in the list will turn to the
notebook page defining the note and allow it to be edited.

A new note can be added by typing its name into the entry field at the top
of the page and pressing Enter. A new, empty page with the name just entered
will be added to the section and automatically selected so that you can
enter the text of the note (i.e. REXX code or other information you wish to
keep track of).

The notepad section has a page for each note currently defined. Selecting
the tab for a note will display the text associated with the note in the
edit control and allow it to be edited.

A note can be deleted by deleting all its text. The page defining the note
will automatically be deleted from the notebook when any other page is
selected

Using the DrRexx editor

All DrRexx notebook pages that allow text to be edited make use of the same set of editing controls.

The text to be edited appears in a standard Presentation Manager multi-line edit control. You may use a
Workplace Shell Font Palette object to drag and drop the font to use for editing onto the multi-line edit control.
You can do the same thing with a Workplace Shell Color Palette object to set the color of the multi -line edit
control. Whatever font and color you select will be saved as a user preference item for use in future editing
sessions. The default font is the same font currently selected for use by the System Editor.

Beneath the edit control is an entry field with a button labeled Find ->. You can enter a string in the entry field
and click the find button to search for the next occurrence of the specified string in the text being edited.
Searching always starts from the current cursor location.

The button labeled <- Switch on the other side of the entry field allows you to switch to any application currently
listed on the OS/2 Presentation Manager Window List. Enter the first few characters of the application name as it

57

appears on the Window List into the entry field and click the <- Switch button. If the application is running, it
will be brought to the foreground automatically. If the application cannot be found, the system will beep to
indicate that it could not switch to the requested application. The text in the entry field at the time the <- Switch
button is pressed is saved as a user preference item when DrDialog exits. Its previous value can be retrieved by
clicking the <- Switch button with an empty entry field.

To the left of the edit control are a column of buttons with the following functions:

Delete the currently selected text and copy it to the clipboard.

Copy the currently selected text to the clipboard. If no text is selected, the entire contents of the edit
control are selected and then copied to the clipboard.

Replace the currently selected text by the contents of the clipboard.

Save all of the text being edited.

Replace all of the text by the last saved copy of the text (or the original contents if the save button has not
been pressed).

Using your own editor

Not everyone is comfortable using a new or different text editor. Recognizing this, DrDialog allows you to edit
the REXX code for your application using your own editor and have the resulting REXX code automatically
imported into your DrRexx application.

In order to use this feature of DrDialog, you must adhere to the following naming convention:

olf the name of your DrRexx application is drive:\path\filename .RES, then the name of the file containing the
associated REXX code must be drive :\path\filename.REX.

Each time DrDialog saves or runs your .RES file, it checks for the existence of a corresponding .REX file. If the
file exists, its contents are automatically included in your .RES file as a special resource type. When your
application runs, this special resource is added to the end of the REXX program that DrRexx creates for you.

Note: When you distribute your DrRexx application, you need not include your .REX file, since its contents have
already been included in your .RES (or .EXE) file.

While the bulk of your DrRexx application can be stored in a separate . REX file, you must still use the DrRexx
editor to provide pointers to the various event handlers in your .REX code. DrDialog assists you with this linking
operation as follows:

If the multi-line edit control in the gvents section of the DrRexx notebook is empty, and you click the ’
button, DrDialog will insert text of the form: CALL dialog.control.event into the multi-line edit control. In

addition, it will copy text of the form: dialog.control.event: into the system clipboard.

58

The CALL statement inserted into the edit control provides the necessary link to your .REX code. You can then
switch to your editor (e.g. using the Switch button) and paste the label created by DrDialog into your .REX file .
Finish the process by adding the REXX code needed to handle the event and you 're done!

Note: You do not need to use this feature of DrDialog in order to call your .REX code. You are free to choose
whatever names for your routines that you like. If you do, you are responsible for ensuring that there are no
duplicate or invalid labels in your application.

The following summarizes the important points to remember when storing your REXX code in an external file:
oThe REXX code must be stored in a file having the same name as your .RES file, but with a .REX extension.

oThe .REX code is automatically included whenever DrDialog saves or runs your .RES file. It only includes the
version stored on disk, so make sure you save the .REX file in your editor before saving or running the .RES file
in DrDialog.

oTerminate your .REX file event handler routines with a RETURN or SIGNAL RETURN statement, depending
on whether you CALLed or SIGNALed the event handler from your DrRexx code.

oYour .REX code becomes part of the .RES file when you save the . RES file in DrDialog, so you need not
include it when you distribute your application to other users.

Writing REXX code for DrRexx

For the most part, writing REXX code for use with DrRexx is no different than writing any other kind of REXX
code. The full power of the REXX interpreter and language are available for your use, including the use of
external function libraries such as RexxUtil.

However, there are a number of details about the DrRexx environment that should be kept in mind when writing
an application:

oEvent handlers are dispatched using the REXX SIGNAL statement. You do not need to specify a label in your
code though. DrRexx will generate the appropriate label for you. In addition, DrRexx will automatically generate
a SIGNAL statement at the end of your event handler to return control to the DrRexx event dispatcher. If you
want to exit a signal handler other than by falling out the bottom of your code, you can do so by issuing a
SIGNAL RETURN. RETURN is the label of the DrRexx statement that waits for and dispatches the next event.

oGlobal procedures that you write can either be CALLed or SIGNALed. DrRexx automatically generates the
name you supplied as the label for the global procedure, and also generates a RETURN statement after the last
statement of the procedure.

oAll DrRexx applications are by their nature OS/2 Presentation Manager programs. Only operations that make
sense within the context of a PM program should be performed in a DrRexx application. For example, you should
not use the RexxUtil function SysTextScreenRead, since this function is defined to work only in a windowed or
full-screen application.

0All SAY or trace output is directed to the DrRexx run-time control window (unless redirected to a different
window using the IsDefault window function).

59

This window is always available when running a DrRexx application under control of DrDialog. When running
under the stand-alone DrRexx environment, SAY or trace output causes the DrRexx run-time control window to
appear automatically.

Each line of SAY or trace output appears as a separate line inserted at the bottom of a scrolling list in the run-time
control window. Only the last 100 lines of output are kept.

oPARSE SOURCE returns OS/2 SUBROUTINE resFile, where resFile is the name of the .RES file being run.
Note that when running the application under DrDialog, resFile is the name of the file most recently saved or
loaded, even if it was from a previous session.

oPULL and other related REXX instructions that read from the data queue will cause a pop-up entry field window
to appear. Data entered into this window is returned as the value PULL'ed.

The DrRexx execution model

In writing a DrRexx application, the following concept should always be kept in mind: all REXX code is executed
in response to some event (of course, there is one exception to this rule, but we'll get to that later)

If you are already familiar with Presentation Manager programming, the preceding statement comes as no
surprise. But if you are mostly familiar with writing batch mode REXX programs, this notion might take some
getting used to.

Basically, a DrRexx application works as follows:

1.The DrRexx run-time monitor waits for an event to occur.

2.0nce an event occurs, it determines which piece of REXX code should be executed to handle it (see the Events
section for more information on how this is done) .

3.If no handler is found, the event is ignored, and control returns to step 1.

4.1If a handler is found, it is executed, and then control returns to step 1 .

It really is that simple. Of course, there are a few other questions that need to be asked (and answered):
0Q. What happens before the first event occurs (i.e. how does a DrRexx application get started)?

0A. After the DrRexx run-time environment finishes loading your resource file, it starts the ball rolling by
automatically invoking the REXX procedure called Init. If you have written such a procedure in the global
procedures section of the DrRexx notebook, it will be called at this time. If you have not written such as
procedure, the run-time environment will automatically supply an empty procedure for you. Note that the Init
procedure is the one exception to the rule for executing REXX code that we mentioned above (i.e. it is not
executed in response to any event).

After running the Init procedure, the run-time environment checks to see if any dialogs have been created yet
(you'll see how to do this in the section on DrRexx window functions). If one or more dialogs have already been
created, the run-time environment enters the loop we described previously.

If no dialogs are created by the Init procedure, the run-time environment searches through all the dialogs in the

resource file for the one with the smallest ID number and automatically creates it for you. It then enters the loop
described above to wait for the first event.

60

If your resource file does not contain any dialogs at all, the run-time environment pops up the run-time control

window and displays the error message: ' No dialog to load'. You can then click on the @ button to terminate
the DrRexx run-time environment (this situation might happen if you were to drag and drop the DrRexx template

icon to create a new DrRexx application, and then double- clicked the new icon thinking you would invoke the
DrDialog editor, but instead end up invoking the DrRexx run-time environment).

0Q. How do I terminate a DrRexx application?
0A. You can terminate a DrRexx application in one of two ways:
-Execute the REXX EXIT statement.

-Close all of your dialogs (refer to the DrRexx window functions section for more information on how to do this).

DrRexx subcommand environments

In addition to the standard REXX CMD subcommand environment (which is the initial environment for all
DrRexx applications), DrRexx also defines two additional subcommand environments:

SAY Treats each subcommand string as if a REXX SAY statement had been performed on it.
NULL Discards each subcommand string without taking any action.

For example, if ADDRESS 'NULL' appears in the DrRexx Init global procedure, all subsequent subcommands
will be discarded for the duration of the DrRexx application (or until another ADDRESS statement is executed).

Using the NULL subcommand environment allows DrRexx code to be written in a somewhat simpler style, as the
following example illustrates:

/* Load a listbox with data: */
list.Delete()

DO i =1T0 file.O

list.Add(file.i)

END

If NULL were not the current subcommand environment, the preceding example
might have been written as:

/* Load a listbox with data: */
CALL list.Delete

DO i =1T0 file.0

CALL list.Add file.i

END

61

Note: It is a common error to use the coding style of the first example even
though NULL is not the current subcommand environment. This can slow your
application down significantly since the subcommand strings are normally
passed to the CMD subcommand environment, which tries to interpret them as
0S/2 commands.

Error handling in DrRexx

If a REXX error occurs in the process of executing a DrRexx application, the DrRexx run-time environment
handles the error by:

oAborting the currently executing REXX routine
oDisplaying an error message indicating the cause and source of the error in the DrRexx run-time control window

oReturning to the event loop to wait for the next event

A REXX error is thus local to the event handler it occurs in and does not abort execution of the entire DrRexx
application.

Note: If the error occurs while running under the stand-alone DrRexx run-time environment, and the run-time
control window is not visible at the time of the error, the window will be made visible before displaying the error

message.

Note: In order for the DrRexx error handling code just described to work correctly, you should not handle REXX
syntax or halt errors directly in your program.

Invoking DrRexx

The syntax for invoking DrRexx is as follows:

DrRexx resourceFile[.RES] [arguments]

where:

resourceFile Name of the resource file containing the DrRexx application to
be run. The file extension must be .RES and may be omitted. If the file name
contains special characters (e.g. blanks), it should be enclosed in double
quotes (e.g. 'My DrRexx Application').

arguments Optional command line arguments to be passed to the DrRexx
application.

62

Getting started: Your first DrRexx application

To help overcome any confusion you might have about how to construct a DrRexx application, we'll walk you
through the steps for creating a very simple DrRexx application.

First, the application...
Allow the user to type in and execute OS/2 commands and view their output in an editable window.
Now, the DrRexx solution...

1.0pen the DrDialog folder and drag the DrRexx.RES icon into whatever folder you want to store the DrRexx
application. If you like, rename the resulting DrRexx file (e.g. CmdEdit.RES).

2.Drag and drop the new DrRexx file you just created onto the DrDialog icon in the DrDialog folder. This will
invoke the DrDialog editor and bring up an empty dialog for editing.

3.For this application we will use:

0A single-line edit control for entering commands
oA pushbutton to execute the current command
oA multi-line edit control to hold the output generated by a command.

Click button 2 to display the pop-up menu and then select from the Controls submenu each of the controls we

B L]
need (i.e. nd =="21). You will have to display the pop-up menu three times to do this, once for
each control. Then arrange and size the controls in whatever way you like using button 2 of the mouse.

4 Next, use the Text option of the pop-up menu to change the text of the controls to match our intended
application (e.g. position the pointer over the pushbutton, click button 2 to display the pop-up menu, then select
the Text option. When the pop-up dialog appears, type Execute and press Enter).

5.In a similar manner, use the Name option of the pop-up menu to give the single-line entry field the name
command, and the multi-line edit control the name output.

6.Next, position the pointer over the pushbutton, display the pop-up menu using button 2, and select the Click
option from the Events submenu.

7.The DrRexx notebook should appear with the Click event page of the events section already selected. Type the
following code into the multi-line edit control on the notebook page:

command.Text() '| RXQUEUE'

file = "'

DO i = 1 TO queued()

PULL line

file = file || line || 'ODOA'X
END

CALL output.Text file

This is the REXX code we want to execute whenever we click on the pushbutton
It passes the current contents of the single-line entry field command to
the CMD subcommand environment and queues its output using RXQUEUE. It then

concatenates all lines queued by the command into a single variable, file,

63

and makes that the new content of the multi-line edit control: output.

8.Now display the run-time window (e.g. by selecting the ___J icon in the
Tools submenu of the button 2 pop-up menu). When the window appears, click

on the ___J button to run the DrRexx application.
9.All of the DrDialog tool windows (except for the DrRexx notebook) should

disappear and be replaced by your application dialog. Type an 0S/2 command

(e.g . DIR) into the single-line edit control, then click on the pushbutton
to execute the command. After a (hopefully brief) delay, the command output
should appear in the multi-line edit control. Voila!

10.0nce you have satisfied yourself that the application does indeed work,

either close the dialog window or click on the @ button in the run-time
window to stop the application. The application dialog should disappear, and

the edit dialog should reappear.

11.Now save the application by selecting the Save option from the File
submenu of the DrDialog menu bar.

12 .Exit DrDialog by double-clicking the system menu icon in the top-left
hand corner of the DrDialog background window.

13.If you want, you can verify that you now have a working DrRexx
application by double-clicking on the icon for the DrRexx file in the folder
you originally placed it in. The application dialog should appear and behave
exactly as it did when you ran it under control of the DrDialog editor.

That's it... you've created your first DrRexx application!
There's plenty of room left for improvement in our little example, so please
feel free to go back, experiment, and try out new ideas. The whole point of

DrRexx is to make the process of developing PM applications faster, simpler,
and maybe even a little bit fun.

DrRexx programming techniques

This section presents some answers to commonly asked questions about programming using DrRexx. The
particular questions answered are:

oHow can I create a modal dialog?

oHow can I associate data with a particular control or dialog?

oHow do I adjust the size and position of controls when a user changes the size of a dialog?
oHow do I create and display a pop-up menu?

oHow can I get the Enter key to signal data entry is complete for a dialog?

oWhat's the easiest way to work with controls whose identity is not known until run-time?

64

oCan my DrRexx application display the same kind of user hints that the DrDialog editor displays at the bottom
of the background window?

oHow do I stop my dialogs from flashing when they are first displayed?

Creating a modal dialog

A modal dialog is a dialog which the user must finish interacting with before proceeding with other parts of an
application. While the modal dialog is active, no other dialog or window in the application can be used (i.e. they
are disabled).

A common example of a modal dialog is a password dialog. Before letting a user proceed with some application
function, a valid password must be entered. Until the password has been entered and validated, no other
application function is to be allowed (even though the dialog windows may be visible).

Ideally, creating a modal dialog should be as simple as possible. For example, in our password example, we
would like to be able to write something like the following:

IF PasswordDialog() = 'TOPSECRET' THEN
/* proceed with password protected function */
ELSE /* indicate user has not entered a valid password */

Normally, because DrRexx applications are event-driven, creating a modal
dialog would be difficult, because we need to suspend one event handler
until some future event handler (e.g. the password dialog's 'OK' button
Click event handler) has executed.

However, there is a DrRexx function that allows us to easily create modal
dialogs. This function, ModalFor, is similar to the QOpen (or OpenFor)
function, but differs in that control does not return until the user has
finished interacting with the dialog being displayed.

After ModalFor displays a specified dialog, it does not return to the caller
until some future event handler executes a REXX RETURN instruction. If you
recall , event handlers normally end with a SIGNAL RETURN statement.
However, for modal dialogs, event handlers which terminate the modal dialog
need to exit using a RETURN statement. Assuming the caller has properly
invoked the modal dialog using the ModalFor function, this accomplishes two
things:

1.It allows the caller of the modal dialog to resume execution.
2.1t allows the modal dialog to return a result to the caller (i.e. the
expression specified on the RETURN statement).

Note: It is important to remember when writing the event handlers for a
modal dialog that every event handler that terminates the dialog must exit
with a RETURN statement. Equally important, no other event handlers for the
modal dialog can exit using a RETURN statement.

65

To finish illustrating this technique using our password example, study the
following code fragments:

PasswordDialog: RETURN ModalFor('passwordDlg')

/* Event handler for 'passwordDlg' OK button: */
password = entryField.Text()

CALL passwordDlg.Close

RETURN password

Associating data with dialogs and controls

Quite often it is useful to be able to associate one or more pieces of data with particular dialogs or controls. For
example, imagine you are writing a telephone dialing application with 10 speed dialing buttons. When the user
clicks on a speed dialing button, you want to dial the number associated with that button . Because you probably
don't know the numbers when you implement the program , you can't explicitly write them in the event handler
for each button. Instead you would like to be able to save the names and numbers externally (for example , in a
NI file), and then attach the information dynamically to the buttons each time your program is run.

While DrRexx provides no function to perform this type of association of data with controls, the REXX language
already has built into it a facility for doing just this sort of thing. The REXX language feature referred to is a
compound symbol .

A compound symbol is simply a REXX variable whose name is divided into several segments, each separated by
a period (e.g. number.dialer.C101) . When the REXX interpreter evaluates a compound symbol, each section of
the name , except the first, is evaluated as a variable and the result is substituted for the original in determining the
final variable name. To illustrate how this language feature can be used to implement our speed dialing example,
consider the following function:

/* Usage is: oldValue = NumberFor(dialog, control [, newValue]) */
NumberFor: PROCEDURE EXPOSE number.

PARSE ARG dialog, control, newValue

oldValue = number.dialog.control

IF arg(3,'E') THEN

number.dialog.control = newValue

RETURN oldValue

Assuming the dialing pushbuttons are numbered 101 through 110, this function
can be used to implement the speed dialing example as follows:

/* In the dialog 'Init' event handler: */

/* Assume 'data' contains the list of phone numbers */
DO i =1TO0 10

CALL NumberFor Dialog(), 'C'|]|(100+i), word(data, i)
END

/* The 'Click' CLASS event handler for each pushbutton: */

66

/* Assume 'PhoneDial' actually dials the telephone */
CALL PhoneDial NumberFor(Dialog(), Control())

Note that a class event handler is used in this example since it avoids
having to write a unique event handler for each pushbutton.

Adjusting controls when a dialog is resized

Many Presentation Manager windows have size borders that allow the user to change the shape of the window.
After the size border is dragged into the desired shape, the content of the window automatically adapts itself to the
new dimensions . Since a window normally only contains a few controls (e.g. a client window, horizontal and/or
vertical scroll bar, and a drop-down menu), re-arranging the contents is a fairly straightforward matter, and is in
fact performed automatically by the window's frame control.

The situation for a dialog is somewhat different however. Dialogs can contain many different types of controls,
arranged in a variety of configurations. Rearranging the size and position of each control after the user changes
the shape of the dialog can be a much more challenging task. For that reason, many Presentation Manager dialogs
do not have sizing borders. This eliminates the application developer's problem, but often comes at the expense of
the application user's convenience. A good example of this is the standard file dialog prompt. How many times
have you wanted to make the file dialog taller so that you could see more file names in the selection list box?

DrRexx addresses this common problem by automatically rearranging the size and position of each control
contained within a dialog after the user changes its size. This rearrangement occurs without the need for you to
write any code whatsoever. The technique used by DrRexx in performing the rearrangement employs a heuristic
based on common dialog layout styles and patterns. Because it is a heuristic, it may or may not rearrange a
particular dialog in an optimal manner. In a case where the algorithm does not perform satisfactorally, you have
one of two choices:

oRearrange the layout of the controls within the dialog until the automatic resizing algorithm performs in a
desirable manner.

oWrite a Size event handler for the dialog. The existence of a Size event handler automatically disables the
automatic resizing logic and allows your event handler to perform whatever rearrangement you wish.

Some general characteristics of the automatic resizing algorithm that can be used in designing a dialog are as
follows:

oThe horizontal and vertical dimensions of the dialog are handled independently. This should be kept in mind
when applying the other guidelines.

oThe largest controls are used to determine how to position and/or size the smaller controls.

oThe alignment of the smaller controls relative to the larger controls is important. Smaller controls positioned
between or spanning the boundaries of the largest controls are handled differently than controls completely
contained between the edges of one of the largest controls.

oThe horizontal and vertical dimensions are handled somewhat differently. Smaller controls tend to grow or
shrink horizontally, while smaller controls tend to be displaced vertically.

Note: The automatic resizing algorithm is invoked any time the user changes a dialog's size using the size border

and no Size event handler is defined for the dialog. It will also rearrange the contents of a dialog when the dialog
's size is changed under program control as long as the dialog has a size border and no Size event handler.

67

Creating and displaying pop-up menus

Pop-up menus have many applications, especially in the area of context- sensitive action selection. DrDialog
allows you to easily create and display them using the drop-down menu window and the MenuPopUp menu
function.

To define a pop-up menu, simply follow these steps:

1.Create a new, empty dialog by double-clicking on the New list box entry in the dialog select tool.

2.Invoke the drop-down menu window for the newly created dialog.

3.Create a new submenu entry in the menu window. The submenu will become the pop-up menu when invoked
using the MenuPopUp function. Be sure to give the submenu entry a label (the label will be used to identify the
submenu to the MenuPopUp function).

4.Add the pop-up menu items to the submenu as you would for a drop-down menu .

That's basically all there is to defining a pop-up menu. To display the menu at run-time, apply the MenuPopUp
function to the dialog and submenu created in steps 1 and 3. The submenu will be displayed as a pop-up menu at
the current pointer location.

If your application has several pop-up menus, you can add each additional pop -up menu as a new submenu by
repeating steps 3 and 4 above for each new pop-up . Enter key. Many application writers are therefore surprised
when they search the list of edit control events and cannot find an event to signal that data entry is complete.

In fact, there are several ways to detect that the user has completed data entry into one or more single line edit
controls:

oDefine a pushbutton (possibly hidden) with the Default style. When the user presses Enter it will generate a
Click event for the pushbutton.

oDefine a Key event handler for the dialog, and check the information returned by the EventData function to see
if the key pressed was the Enter key.

oDefine a LoseFocus event handler for each single line edit control. This handler will be invoked any time the
edit control loses focus (e.g. when the user presses the Tab key or clicks the mouse pointer on another edit
control).

Signaling that data entry is complete

A single line edit control does not process the keyboard Enter key. Many application writers are therefore
surprised when they search the list of edit control events and cannot find an event to signal that data entry is
complete.

In fact, there are several ways to detect that the user has completed data entry into one or more single line edit
controls:

oDefine a pushbutton (possibly hidden) with the Default style. When the user presses Enter it will generate a
Click event for the pushbutton.

oDefine a Key event handler for the dialog, and check the information returned by the EventData function to see
if the key pressed was the Enter key.

68

oDefine a LoseFocus event handler for each single line edit control. This handler will be invoked any time the
edit control loses focus (e.g. when the user presses the Tab key or clicks the mouse pointer on another edit
control).

Working with dynamic controls
By dynamic control we mean a control whose identity is not known until run- time. DrRexx provides a means of

dealing with such controls through use of the ...For functions. That is, every DrRexx window function can be
written in one of two ways:

result = dialog.control.function(...)
or
result = functionFOR(‘'dialog', 'control', ...)

The latter is especially well suited for the case where the identity of the
control to operate on is not known until run-time. For example, the
following routine is a modified version of the Drop class handler taken from
the Softball.RES sample program:

CALL EventData

dlg ‘Softball’

src = 'C'||EventData.6

dst = 'C'||EventData.?

player = TextFor(dlg, src)
playerHint = HintFor(dlg, src)
position = TextFor(dlg, dst)
positionHint = HintFor(dlg, dst)
IF position = '' THEN DO

CALL TextFor dlg, src, '

CALL DragFor dlg, src, '

CALL HintFor dlg, src, '

END

ELSE DO

CALL TextFor dlg, src, position
CALL HintFor dlg, src, positionHint
END

CALL TextFor dlg, dst, player
CALL DragFor dlg, dst, 'Player'’
CALL HintFor dlg, dst, playerHint

In this case, the controls to operate on are determined from the EventData
associated with the Drop event, and so are not known until run-time. Notice
the heavy use of ...For functions to operate on the affected controls.

A variation on this technique which oftens leads to simpler, more readable,
code is based on the Isdefault function. IsDefault can be used to establish
a new default context for DrRexx window function references. Study the

69

following version of the previous routine written using IsDefault:

CALL EventData

dlg ‘Softball’

src = 'C'||EventData.6

dst = 'C'||EventData.?
position = TextFor(dlg, dst)
positionHint = HintFor(dlg, dst)
CALL IsDefaultFor dlg, src
player = Text()

playerHint = Hint()

IF position = '' THEN DO
CALL Text "'

CALL Drag ''

CALL Hint "'

END

ELSE DO

CALL Text position

CALL Hint positionHint

END

CALL IsdefaultFor dlg, dst
CALL Text player

CALL Drag 'Player’

CALL Hint playerHint

In this case, notice how the use of IsDefault simplified the resulting code
. Also, given the way DrRexx resolves window function references, using the
default context for window functions wherever possible may actually improve
performance

Putting user hints into your DrRexx application

Many DrDialog users like the helpful hints that appear at the bottom of the DrDialog background window
describing the name or function of the control being pointed at. And they wonder if it is possible to incorporate
such hints into their own DrRexx applications. The answer is yes...simply follow these steps :

oln the editor, point at a control to be given a hint. Then either press the '?' key or select the Hint... option from
the pop-up menu . Type the hint text into the prompt dialog that appears and press Enter. The hint text associated
with the control will appear in quotes in the hint control at the bottom of the DrDialog background window.
Repeat this step for each control which is to have a hint, including the dialog if desired.

oln the REXX code for your application, use the IsDefault function to specify which control to display hint text
in. If desired, two controls can be used : one for control hints and the other for dialog hints (much like the
DrDialog hint controls). Any control that accepts text can be use as a hint control.

olf desired, the hint for a control can be changed dynamically at run-time using the Hint function.

70

Preventing dialogs from initially flashing

If your dialog has fields that need to be initialized, or the entire dialog needs to be repositioned after it is opened,
you may notice an annoying flash effect as the fields are initialized or the dialog is moved. Happily, there is a
simple way to prevent this from happening:

1.In the editor, turn off the Visible attribute in the dialog's pop- up style dialog. This will prevent the dialog from
automatically displaying when it is opened.
2.At the end of the dialog's Init event handler, add the following statement:

CALL Show

This will display the dialog after all initialization has occured, thus
eliminating the flash effect.

Step 1 also applies to dialogs used as notebook pages and will prevent the
dialog from displaying before it is added to the notebook. Step 2 is not
necessary because the notebook will automatically make the dialog visible at
the appropriate time once it has been added as a notebook page.

DrRexx sample programs

The DrDialog package includes a number of sample DrRexx applications to illustrate programming using
DrRexx:

File Description

Events.RES A program that demonstrates the various events that can be processed by a DrRexx application
Calc.RES A simple four function calculator

Clock.RES A simple clock

Clock2.RES A somewhat fancier clock

Swapper.RES Displays the size of SWAPPER.DAT

BMPLIst.RES Displays .BMP and .GIF files

Drives.RES Displays space utilization for a selected drive

Fac.RES A simple multi-threaded program to calculate factorials. One thread computes factorials while the other
thread displays the results.

TestKey.RES Displays the information obtained from the EventData function for a dialog 'Key' event (useful for
finding the names of particular keys when writing a keyboard driven application)

TestDrop.RES Displays the information obtained from a 'Drop' event (useful for debugging a drag and drop
application)

DragDrop.RES Illustrates how drag and drop support works with various controls

Softball.RES Allows a softball team captain to assign players to positions . [llustrates drag and drop, using
metafiles with turtle controls, using the system clipboard, and static and dynamic control hint text. Also
illustrates working with controls whose identity is not known until run-time.

71

You might wish to try running and editing a few of these applications to get a feel for what DrRexx programming
is like.

If you have opened the DrDialog subdirectory folder, you can run any of the sample DRREXX applications by
double-clicking on its icon. You can also edit any of the sample applications by dragging and dropping its icon on
the DrDialog icon .

DrRexx example programs

In addition to the sample programs provided with DrDialog, there are also a number of example programs
contributed by users of DrDialog. The examples are provided as part of the DrDialog package in the file:
DREXAM.RAM. Each example typically illustrates one or more techniques for using DrRexx and DrDialog that
may be helpful when trying to become productive with DrDialog as quickly as possible.

To install the examples, simply double-click on the DrExam icon in the DrDialog folder and fill in the
appropriate information in the installation dialog that appears. A new Example folder containing the examples
will be added to your DrDialog folder when installation is complete.

Note: The DrExam icon will only be present in your DrDialog folder if the DREXAM.RAM file was in your
DrDialog directory at the time you installed DrDialog. If no DrExam icon is present, you should copy
DREXAM.RAM into the DrDialog directory and re-run the DrDialog INSTALL program.

Once you have succesfully installed the examples, a good place to start is to double-click on the housecal.res icon
in the Examples folder. This program lets you:

oRead a brief description of each example
oRun each example to see what it does
oEdit each example to see what makes it tick

The author would like to thank Bill Gillquist, who has coordinated and collected each of the examples found in
DREXAM.RAM, as well as the following people who have contributed one or more examples to the collection:

oRalph Baeumer
oBuzzy Brown
oGuy De Ceulaer
oMark Fiechtner
oBill Gillquist
oJacques Gourdon
oThomas Lindqvist
oPierre Lotigie-Laurent
oGregor Neaga
oMark Radford
oHelmut Saueregger

DrRexx window functions

72

In addition to the normal suite of REXX built-in functions, the DrRexx run- time environment also defines an
extensive set of functions for interacting with Presentation Manager dialogs and controls (i.e. windows). Each of
these window functions is invoked using the following object oriented syntax style:

[dialog.][control.]function (arguments)

where dialog refers to the name assigned to a dialog using the DrDialog Name
window, and control refers to the name assigned to a control using the same
tool. For example, the statement:

value = myDialog.entry.Text()
might be used to retrieve the contents of the entry edit field of the
myDialog dialog and assign it to the variable value.

Note that the use of dialog and control names are optional. If either or
both are omitted, the following rules apply:

oIf only dialog is omitted, the function applies to the named control within
the dialog in which the event occurred.

oIf both dialog and control are omitted, the function applies to the control
generating the event.

oIf only control is omitted, the function applies to the frame of the named
dialog.

Note: In the case of the Init procedure used to start a DrRexx application,
there is no event. Therefore, any window function calls it contains must use
a fully qualified name. This is the only exception to the above set of
rules.

If no name was assigned to a dialog using the DrDialog Name window, Dnnn,
where nnn is the ID number of the dialog, may be used in place of the dialog
name (e .g. D100.entry.Text()).

Cnnn, where nnn is the ID number of a control, may also be used in place of
the name of a control, whether the control has a name or not (e.g. D100
.C101.Text()).

In addition, DrRexx also supports the following variation for invoking
window functions:

functionFOR(dialog [, control [, arguments]])

where dialog and control are as described above. For example:

value = TextFor('myDialog', 'entry')

73

would be the equivalent way of writing the previous example using the
alternate syntax style.

The main use of this alternate style is in cases where the dialog and
control name are determined dynamically at run-time, rather than statically
at edit time .

The defined window functions are as follows:

Name Description

Open Open (i.e. create) a dialog window

Close Close (i.e. destroy) a dialog window

Owner Get/Set the owner of a dialog window

Frame Get the size of a dialog window's frame
Hide Hide a window

Show Show a window

Visible Get/Set the visibility state of a window
Top Make a window topmost

Bottom Make a window bottommost

Enable Enable a window

Disable Disable a window

Enabled Get/Set the enable state of a window
Focus Give the focus to a window

Position Get/Set a window's position and/or size
Text Get/Set a window's text

Hint Get/Set a window's hint text

H Add an item to a window

Delete Delete an item from a window

Item Retrieve an item from a window

Select Query/Select an item in a window

Range Set a window's range

Style Get/Set a window's style bits

Font Get/Set a window's font

Color Get/Set a window's color

ID Get a window's ID number

Drag Enable/Disable dragging a control

Drop Enable/Disable a control as a drop target
IsDefault Make a window the current default window
Timer Start/Stop a window timer

View Get/Set a window's viewing mode

SetStem Set a list of window values

GetStem Get a list of window values

Controls Get the names of all controls in a dialog
Classes Get the classes of all controls in a dialog

Open

74

rc = [dialog.]Open(
[alias] [, registeredName]
[, 'Modal' | 'Nonmodal'])

Opens (i.e. creates) the dialog for the specified window, which must be a
dialog.

If no arguments are specified, it creates the dialog corresponding to dialog

Note: There can be only one dialog with a specified name in existence at a
time.

If alias is specified, the dialog is created with the name alias. Again,
alias must not be the name of an already existing dialog.

If registeredName is specified, the dialog is registered with the
Presentation Manager so that it will appear on the Window List with the
specified name, and the dialog is owned by the desktop. If registeredName is
not specified, the dialog is not registered with PM, and in addition the
current dialog is made the owner of the newly created dialog. The current
dialog is the dialog to which the current event belongs.

If the third argument is omitted or Nonmodal, then the dialog is displayed
normally. If the third argument is Modal, then the dialog is displayed
modally. A modal dialog disables all other dialogs currently open and
prevents the user from interacting with them until the modal dialog is
closed. When the modal dialog is closed, all previously disabled dialogs are
re-enabled. Note that only the first letter (i.e. M or N) of the third
argument need by specified.

A result of 1 indicates the window was successfully created, and a result of
0 indicates that the window could not be created (e.g. a dialog with the
same name already exists).

For example:

/* Create two calculator windows */
/* then hide the second one: */
CALL calc.Open 'calcl’

CALL calc.Open 'calc2'
CALL calc2.Hide

Close

75

rc = [dialog.]Close()

Closes (i.e. destroys) the specified window, which must be a dialog

A result of 1 indicates the window was successfully destroyed, and a result
of 0 indicates that the window could not be destroyed (e.g. it did not exist
to start with).

For example:

/* Close a prompt window: */
CALL prompt.Close

Owner

oldOwner = [dialog.]Owner([newOwner])

Gets or sets the owner window for the specified window, which must be a
dialog.

Returns the current owner of the specified window. If the desktop is the
current owner of the window, the null string is returned.

NewOwner specifies the name of the window which is to be the new owner of
the specified window. If newOwner is the null string, the desktop window is
made the new owner of the window; otherwise newOwner must be the name or
alias of an existing dialog window.

Making one window the owner of another affects the windows in the following
manner:

oIf the owner window is moved, the owned window moves with it.
oIf the owner window is destroyed, any windows it owns are also destroyed.
oAn owner window always appears behind all windows it owns.

For example:

/* Make the window 'owned' by the desktop: */
CALL prompt.Owner ''

76

Frame

result = [dialog.]Frame()

Gets the size of the frame for the specified window, which must be a dialog

. The result is a string of the form: left bottom right top, where:

left Width of left side of dialog frame
bottom Height of bottom side of dialog frame
right Width of right side of dialog frame
top Height of top side of dialog frame

For example:

/* Make the dialog big enough to hold */

/* 2 40 x 40 icon buttons: */

PARSE VALUE dialog.Position() WITH x y .

PARSE VALUE dialog.Frame() WITH left bottom right top
CALL buttonl.Position left, bottom

CALL button2.Position left + 40, bottom

CALL dialog.Position x, y, left + 80 + right,,

bottom + 40 + top

Hide

[dialog.][control. JHide(
['Update' | 'Noupdate'])

Hides the specified window, which can be any dialog or control.

If no argument or Update is specified, the window is hidden immediately. If

Noupdate is specified, the window is not hidden, but all future updates to
the window are inhibited until the window is made visible again using the
Show function . Only the first letter (i.e. U or N) need be specified.

For example:

/* Hide a list while it is being updated: */
CALL list.Hide 'N'

CALL list.Delete

DO i =1 TO data.0

CALL list.Add data.i

77

END
CALL list.Show

Show

[dialog.][control.]Show()

Shows the specified window, which can be any dialog or control.

This function makes visible a window that was initially hidden or made
hidden using the Hide function.

For example:

/* Show a pushbutton: */
CALL button.Show

Visible

oldState = [dialog.][control.]Visible(
[newState])

Gets or sets the visibility state of the specified window, which can be any
dialog or control.

Returns 1 if the window is currently visible and 0 if it is hidden.

If newState is specified, it makes the specified window visible if newState
is not @, and hides the window is newState is 0.

For example:

/* Hide the 'OK' pushbutton if the entry field is hidden: */
IF entry.Visible() = 0 THEN CALL okButton.Visible 0

Top

78

[dialog.][control.]Top()

Makes the specified window, which can be any dialog or control, the topmost
in its group. If the window is a control, the control is moved in front of
all other controls in the same dialog. If the window is a dialog, the dialog
is moved in front of all other dialogs on the screen.

For example:

/* Move the playing card to the top of the deck: */
CALL TopFor 'Tableau', curCard

Bottom

[dialog.][control.]Bottom()

Makes the specified window, which can be any dialog or control, the
bottommost in its group. If the window is a control, the control is moved
behind all other controls in the same dialog. If the window is a dialog, the
dialog is moved behind all other dialogs on the screen.

For example:

/* Move the playing card to the bottom of the deck: */
CALL BottomFor 'Tableau', curCard

Enable

[dialog.][control.]Enable()

Enables the specified window, which can be any dialog or control.
Enabling a window allows a user to interact with it. This function can be
used to re-enable a window that was previously disabled using the Disable
function .

For example:

79

/* Enable a pushbutton: */
CALL button.Enable

Disable

[dialog.][control.]Disable()

Disables the specified window, which can be any dialog or control.

Disabling a window prevents a user from interacting with it. The window can
later be re-enabled using the Enable function.

For example:

/* Disable a pushbutton: */
CALL button.Disable

Enabled

oldState = [dialog.][control.]Enabled(
[newState])

Gets or sets the enabled state of the specified window, which can be any
dialog or control.

Returns 1 if the window is currently enabled, and 0 if it is disabled.

If newState is specified, it enables the specified window if newState is not
0, and disables the window is newState is 0.

For example:

/* Disable the entry field if the check box is not selected: */
IF check.Select() = 0 THEN CALL entry.Enabled 0

Focus

80

[dialog.][control.]Focus()

Gives the input focus to the specified window, which can be any dialog or
control.

For example:

/* Give the focus to an entry field: */
CALL entry.Focus

/* Give the focus to a different dialog: */
CALL promptDialog.Focus

Position

result = [dialog.][control.]Position(
[x [y [dx [dy]] 1 1)
(x [, y [, dx [, dyl 111)

Gets or sets the position of the specified window, which can be any dialog
or control.

If no arguments are specified, it returns the current size and position of
the window as a string of the form: x y dx dy.

The size and position of the window can be set by specifying one or more
arguments as shown above. omitted trailing arguments leave their current
value unchanged.

For example:

/* Move a pushbutton to a new location: */
CALL button.Position 20, 30

Text

oldText = [dialog.][control.]Text(
[newText])

81

Returns the current text associated with the specified window, which can be
any dialog or control, and optionally sets a new text value.

The text associated with a window varies from window to window. For a
pushbutton, it is its label. For a dialog, it is its window bar title. For a
multi -line edit control, it is the complete text contained within the
control. Other controls may have not any text associated with them (e.g. a
Rectangle control). In that case, the result returned is the null string,
and any value set is ignored.

Note: If the specified window is a dialog, setting a new value for the title
bar using Text will also set the dialog's Window List entry if the dialog
was originally registered with Presentation Manager in the Open function
used to create the dialog.

For example:

/* Clear the contents of an edit field: */
CALL myDialog.edit.Text "'

Hint

oldHint = [dialog.][control.]Hint(
[newHint])

Returns the current hint text associated with the specified window, which
can be any dialog or control, and optionally sets a new hint text value.

If newHint is specified, it replaces the current hint text associated with
the control. The exception occurs when newHint is the null string, in which
case the hint text will be restored to whatever value was set in the editor
using the hint pop-up dialog.

The control in which hint text is displayed can be specified using the
IsDefault function. Hint text associated with a dialog can optionally be
displayed in a different control than hint text associated with controls
contained within the dialog. The hint text associated with a control or
dialog is displayed in the current hint control whenever the pointer passes
over the control or dialog.

For example:
/* Set the label and hint text for a button: */

CALL myDialog.button.Text '911'
CALL myDialog.button.Hint 'Dial 911 to report an emergency'

82

Add

Adds an item to the specified window, which must be a list box, combo box, _notebook or container.

Add (for a list box or combo box)

result = [dialog.][control.]Add(

item
[, 'Ascending' | 'Descending' | 'Last' | n]
[, data])

Adds an item to the specified list box or combo box. The text of the item to
be added is specified by item. The second argument specifies where the item
is to be added into the list:

oIn Ascending order
oIn Descending order
oLast

0As item n

Only the first letter (i.e. A, D, or L) need be specified. If the second
argument is omitted, the item will be added at the end of the list (i.e .
last).

The third argument specifies an optional data value to be associated with
the item. Data will not appear in the list, but can later be retrieved using
the _Item function.

The index of the inserted item in the list is returned as the result.

For example:

/* Put all words in a string into a */

/* list in alphabetical order: */

DO i = 1 TO words(string)

CALL myDialog.list.Add word(string, i), 'A’
END

Add (for a notebook)

result = [dialog.][control.]Add(
[page]

83

[, 'First' | 'Last' | 'Next' | 'Previous']
[, dialog] [, tab] [, status] [, data])

Inserts a new page into a notebook. Page specifies the page to insert
relative to, and should either be 0 or a page ID returned by a previous Add
call for the same notebook. The second argument specifies where the new page
is to be inserted into the notebook:

0oAs the First page (page may be 0)
0As the Last page (page may be 0)
0As the Next page after page

0As the Previous page before page

Only the first letter (i.e. F, L, N or P) need be specified. Note also that
the case of the first character of the second argument is important. If
upper case, a page with a major tab is inserted. If lower case, a page with
a minor tab is inserted. If the second argument is omitted, the new page
will be added with a major tab as the last page of the notebook.

Dialog specifies the name of the dialog to be used as the contents of the
new page. If omitted, a blank page is inserted. The dialog name may either
be the name of a dialog in the resource file or the alias of a dialog
created using the QOpen function. If a dialog resource name is specified, it
need not have already been opened.

Note: It is good practice to define all dialogs used as notebook pages with
the Visible attribute off. This prevents the dialog from momentarily
appearing outside of the notebook when it is added. The notebook control
will automatically make the dialog visible whenever its page is selected.
Also note that a single dialog can be used as the contents for more than one
page of the same notebook .

Tab. status, and data specify the initial contents of the new page's tab,
status line, and data fields respectively. See the Item function for more
information about getting and setting the value of these fields. Note that
if status is specified and is not empty, the new page will have a status
line; otherwise it will not .

The ID of the newly created page is returned as the result. If the result is
0, the page was not created successfully.

For example:

/* Insert a major and minor page at the */
/* beginning of a notebook: */

pagel = notebook.Add(0, 'F', 'CoverPage', '=BITMAP:#50')
page2 = notebook.Add(pagel, 'n', 'DataPage’,
‘Data’', 'Customer data')

84

Add (for a container)

result = [dialog.][control.]Add(

label [, bitmap]

[, '"First' | 'Last' | 'Next'] [, item]
[, data])

Inserts a new item into a container. Label specifies the text label to use
for the new item. Bitmap specifies the name of the optional bitmap to
display with the new item. If specified, it should be a string of the form:
dll:#resource, where resource is the resource number of the bitmap within
the DLL specified by dll (e.g. BITMAP:#50). Alternatively, the form :
filename.BMP can also be used, where filename.BMP is the name of a file
containing a bitmap in .BMP format. If bitmap is not specified, then no
bitmap is displayed for the new item.

The third argument specifies where the new item should be inserted in the
container:

0As the First item
0As the Last item (the default)
0As the Next item after item

If Next is specified, the new item is always inserted after the entry
specified by item. If the second argument is First or Last, the new item is
inserted at the beginning or end of the container, unless item is specified,
in which case the new item is inserted as the first or last item whose
parent is item. If specified, item must be a value returned by a previous
Add request for the same container . Specifying item allows the items in the
container to be organized and displayed hierarchically using the Hierarchy
or Outline argument to the View function.

Only the first letter (i.e. F, L or N) of the third argument need be
specified. The case of the first letter also determines the placement of the
new item in the container's z-order. An upper case letter (e.g. L) will
place the item at the top of the z-order (i.e. on top of all other container
items); while a lower case letter (e.g. 1) will place the new item at the
bottom of the z-order (i.e. beneath all other container items).

Data specifies an optional data value to associate with the new item. Its
value can later be retrieved or modified using the Item function.

The ID of the newly created item is returned as the result.
For example:

/* Insert a folder container two files into */
/* a container:

&5

folder = container.Add('Sample', 'BITMAP:#68')
CALL container.Add 'TEST.RES', 'BITMAP:#1',6, folder
CALL container.Add 'TEST.REX', 'BITMAP:#1',6, folder

Delete

Deletes one or all items from the specified window, which must either be a list box, combo box, notebook or a
container.

Delete (for a list box or combo box)

rc = [dialog.][control.]Delete(
[index])

Deletes one or all items from the specified list box or combo box. If no
arguments are specified, all list items are deleted. If index is specified,
the index th item in the list is deleted (the index of the first list item
is 1).

The function returns the number of items remaining in the list box or combo
box after the delete.

For example:

/* Delete all list items: */
CALL myDialog.list.Delete

Delete (for a notebook)

rc = [dialog.][control.]Delete(
[page])

Deletes one or all pages from the specified notebook. If no arguments are
specified, all notebook pages are deleted. If page is specified, the
corresponding notebook page is deleted. Page should be a page ID returned by
a previous Add call for the same notebook.

The function returns 1 if the delete was successful and 0 otherwise.

86

For example:

/* Delete a particular notebook page: */
CALL notebook.Delete pagel

Delete (for a container)

rc = [dialog.][control.]Delete(
[item])

Deletes one or all items from the specified container. If no arguments are
specified, all items are deleted; otherwise only the item specified by item
is deleted.

The function returns the number of items successfully deleted from the
container.

For example:

/* Delete all container items: */
CALL container.Delete

ltem

or container.

Item (for a list box or combo box)

result = [dialog.][control.]Item(
[index [, 'Value' | 'Data'] [, value]])

Gets or sets an item from the specified list box or combo box.

If no arguments are specified, it returns the number of items currently in
the list.

If index is specified, it returns information about the indexth item in the
list (the index of the first list item is 1). If the second argument is

87

Value or omitted, the list item itself is returned. If the second argument
is Data, the data originally associated with the item using the Add function
is returned. Only the first letter of the second argument (i.e. V or D) need
be specified.

If value is specified, it replaces the current value (or data) of the
indexth item.

For example:

/* Move a list item from one list to another: */
CALL list2.Add listl.Item(index)
CALL listl.Delete index

Item (for a notebook)

result = [dialog.][control.]Item(
[page [, 'Tab' | 'Status' | 'Data'] [, value]])

Gets or sets a page item from the specified notebook.

If no arguments are specified, it returns the number of pages in the
notebook .

If page is specified, it gets or sets information about the specified
notebook page, which should be an ID returned by a previous Add call for the
same notebook. The second argument specifies what kind of information about
the page is to be set or retrieved:

oThe page Tab
oThe page Status line
oThe page user defined Data

Only the first letter (i.e. T, S, or D) need be specified. If the second
argument is omitted, it defaults to getting or setting the notebook page tab

Value specifies the data used to set new page information. If value is
omitted, the current value is not changed.

The function returns the current value for the specified page prior to
setting any new value.

Note: A bitmap can be used as a page tab by specifying value as:
=dl1l:#resource, where resource is the resource number of the bitmap within
the DLL specified by dll (e.g. =BITMAP:#50). Alternatively, the form:
=filename.BMP can also be used, where filename.BMP is the name of a file

88

containing a bitmap in .BMP format.
For example:
/* Set a notebook page's tab and status line: */

CALL notebook.item pagel, 'T', '=BITMAP:#50'
CALL notebook.item pagel, 'S', 'Order:' orderNum

Item (for a value set)

result = [dialog.][control.]Item(
[row, column [, value]])

Gets or sets an item from the specified value set.

If no arguments are specified, it returns the number of rows and columns in
the value set in the form: rows columns.

If row and column are specified, it returns the current value of the item at
the specified row and column.

Value specifies the new value for the item at the specified row and column .
If omitted, the current value is not changed. Value may be any of the
following forms:

[@]text A text label (e.g. 'Next'). Note that the leading '@' character 1is
optional, and can be used to distinguish a label starting with '=' or '#'.

=dll:#resource A bitmap with resource number resource in the .DLL specified
by dll.

=filename.BMP A bitmap stored in the .BMP file specified by filename .BMP.
The .BMP file extension must be specified.

#color A color index (e.g. '#1' equals the color blue).

#r g b A triplet of numbers specifying a color as its component red, green
and blue values (e.g. '#255 255 0' is a bright yellow).

For example:
/* Set up a color select value set table: */
DO i =1TO 16

CALL valueset.item 1, i, '#'|]|(i-1)
END

&9

Item (for a slider)

result = [dialog.][control.]Item(
[tick [, 'Value' | 'Size'] [, valuel]l)

Gets or sets a tick value for the specified slider.

If no arguments are specified, it returns the number of tick marks in scale
1 and scale 2 of the slider in the form: ticksl ticks2.

If tick is specified, it returns information about the tick mark specified
by tick. If tick is greater than 0, then scale 1 of the slider is used and
scale 1 becomes the current primary scale for the slider. If tick is less
than 0, then scale 2 of the slider is used and scale 2 becomes the current
primary scale for the slider. In this case, abs(tick) is used to determine
the number of the tick to get or set information about.

If the second argument is Value or omitted, then the text associated with
the specified tick mark is set or returned. If the second argument is Size,
then the width (or height) of the specified tick mark is set or returned.
Note that only the first character of the second argument (i.e. V or S) need
be specified

The third argument, value, specifies the new value for the specified tick
mark's text or size. If omitted, the current value is not changed.

For example:

/* Label a slider with Fahrenheit and Centigrade */
/* scales with tick marks every two degrees, and */
/* text labels every 10 degrees: */

DO i = 32 TO 212 BY 2

CALL slider.Item i - 31, 'S', 5

END

DO i = 40 TO 210 BY 10

CALL slider.Item i - 31,, 1

END

DO i =0 TO 100 BY 2

CALL slider.Item -(i + 1), 'S', 5

END

DO i = 0 TO 100 BY 10

CALL slider.Item -(i + 1),, i

END

90

Item (for a container)

result = [dialog.][control.]Item(
[item [, 'Value' | 'Bitmap' | 'Data’ | column]
[, value] 1)

Gets or sets an item value from the specified container.

If no arguments are specified, it returns the number of items currently in
the container.

If item is specified, it gets or sets information about the specified
container item, which can either be 0 or an ID returned by a previous Add
call for the same container. An item of 0 refers to the container title.

The second argument specifies what kind of information about the container
item is to be set or retrieved:

oThe item Value (i.e. label)

oThe item Bitmap

oThe item Data

OA specified item column: 1..n, where n is the number of columns of data
previously defined for each container item using the SetStem function.

For the first three cases, only the first letter (i.e. V, B, or D) need be
specified. If the second argument is omitted, it defaults to getting or
setting the item's value (i.e. label).

Value specifies the data used to set new item information. If value is
omitted, the current value is not changed.

The function returns the current value for the specified item field prior to
setting any new value.

For example:

/* If the data field for a container item = 'FILE',6 */
/* change its icon to be a 'sticky pad': */

IF container.Item(item, 'D') = 'FILE' THEN DO

CALL container.Item item, 'I', 'BITMAP:#60'
END

Select

91

Gets or selects an item in the specified window, which must be a list box, combo box, single-line edit control,
horizontal or vertical scroll bar, spinbutton, push button, radio button, check box, bagbutton, notebook, value set,
slider or _container.

Select (for a list box or combo box)

result = [dialog.][control.]Select(
[index [, 'Select' | 'Unselect' | 'Next' | 'Top' 1])

Gets or selects an item in the specified list box or combo box.

If no arguments are specified, the index of the first selected item in the
window is returned. If no item is selected, 0 is returned.

If index is specified and the second argument is Select or omitted, the
index th item in the list is selected. The index of the first previously
selected item, if any, is returned as the result.

If the second argument is Unselect, the indexth item in the list is
unselected. The index of the first previously selected item, if any, is
returned as the result.

If the second argument is Next, the index of the next selected item in the
list following the indexth item is returned, if any. If there is no selected
item following the specified index, 0 is returned.

If the second argument is Top, the list is scrolled so that the indexth item
in the list is the topmost. The index of the previous topmost item is
returned as the result.

Only the first letter of the second argument (i.e. S, U, N, or T) need be
specified.

For example:

/* Copy the selected item to an edit field: */
CALL entry.Text list.Item(list.Select())

Select (for a single line edit control)

result = [dialog.][control.]Select(
[left [, length]])
[left length])

92

Gets or selects the range of selected text for the specified single line
edit control.

It returns the current selection range in the form: start length, where
start is the one-based index of the first character selected, and length is
the number of characters selected (0 indicates no character is selected).
The Start argument specifies the first character to be selected. The length
argument specifies the number of characters to include in the selection.
Length defaults to 0, which means that no characters are selected (i.e. the
cursor is simply moved to the location specified by start).

For example:

/* Select the entire edit control's contents: */
CALL entry.Select 0, 9999

Select (for a horizontal or vertical scroll bar)

result = [dialog.][control.]Select(
[position])

Gets or selects the position of the horizontal or vertical scroll bar's
slider.

It returns the current position of the scroll bar slider.
Position specifies the new position of the slider.
For example:

/* Scroll to the beginning of the file: */
CALL scroll.Select 1

Select (for a spinbutton)

result = [dialog.][control.]Select(
[position])

93

Gets or selects a spinbutton item.

It returns the current value or index selected by the spinbutton.

Position specifies the new value or index to be selected by the spinbutton .
If the spinbutton is numeric, it specifies the new number selected. If text
, position specifies the new index of the value to be selected.

For example:

/* Copy the current spinbutton item to the edit field: */

item = spin.Select()
CALL entry.Text value.item

Select (for a push button, check box, radio button or bagbutton)

result = [dialog.][control.]Select(
[state])

Gets or sets the state of the specified push button, check box, radio button
or bagbutton.

It returns the current state of the button or check box. A 0 means it is in
the unchecked state; a 1 means it is in the checked state; and a 2 means it
is in the indeterminate state.

State specifies the new state of the button or check box, and should have
the value 0, 1, or 2 as described above.

For example:

/* Set a check box to the 'checked' state: */
CALL check.Select 1

Select (for a notebook)

result = [dialog.][control.]Select(
[page])

Gets or selects a page in the specified notebook.

94

It returns the ID of the currently selected page of the notebook.

Page specifies the ID of the new notebook page to be selected (i.e. brought
to the front of the notebook).

For example:

/* Set the status line of the selected notebook page: */
CALL notebook.Item notebook.Select(), 'S', num 'files found'

Select (for a value set)

result = [dialog.][control.]Select(
[row, column])

Gets or selects an item in the specified value set.

It returns the currently selected item of the value set in the form: row
column.

Row and column specify the position of the new value set item to be selected
. The rows and columns of the value set are numbered starting from 1.

For example:

/* Select the top-left value set item: */
CALL valueset.Select 1, 1

Select (for a slider)

result = [dialog.][control.]Select(
[tick])

Gets or selects a tick mark in the specified slider.

It returns the number of the currently selected tick on the current primary
scale of the slider.

Tick specifies the new position of the slider arm in terms of tick marks

(the first tick mark is 1). If tick is greater than 0, then scale 1 of the
slider is used and scale 1 becomes the current primary scale for the slider.

95

If tick is less than 0, then scale 2 of the slider is used and scale 2
becomes the current primary scale for the slider. In this case, abs(tick)
is used to determine the number of the tick mark to position the slider arm
at.

For example:

/* Get the current temperature setting of the slider: */
temp = slider.Select() + 31

Select (for a container)

result = [dialog.][control.]Select(

[item
[, '[+/-1Select' | '[+/-1Mark' |
‘Cursor' | 'Next' 11)

Gets or selects an item in the specified container.

If no arguments are specified, the first selected item in the container 1is
returned. If no item is selected, 0 is returned.

If item is specified, then if the second argument is:

Omitted The item specified by item is selected. The current first selected
item is returned as the result.

[+]Select The item specified by item is selected. The current first selected
item is returned as the result.

-Select The item specified by item is unselected. The current first selected
item is returned as the result.

[+]IMark The item specified by item is marked. The current first marked item
is returned as the result.

-Mark The item specified by item is unmarked. The current first marked item
is returned as the result.

Cursor The cursor is moved to the item specified by item The current item
containing the cursor is returned as the result.

Next The next selected item, if any, after the item specified by item is
returned. If no selected items follow item, then 0 is returned.

Only the first letter of the second argument (i.e. S, M, C, or N) need be
specified (e.g. '-M' is equivalent to '-Mark').

For example:
/* Mark the currently selected container item: */

CALL container.Select container.Select(), 'Mark'

96

Range

Sets the range for the specified window, which must be a dialog, single-line edit control, horizontal or vertical
scroll bar, spinbutton, value set or glider .

Range (for a dialog)

result = [dialog.].Range(
[minDx, minDy [, maxDx, maxDy]])

Returns the current minimum and maximum size for a dialog that can be set
using the dialog's sizing border. The result is returned as a string of the
form: minDx minDy maxDx maxDy. If maxDx and maxDy are 0, then there is no
upper bound for the size of the dialog.

If minDx and minDy are specified, they become the new current minimum width
and height that can be set for the dialog using the sizing border. By
default, the minimum size is the original size of the dialog at the time is
is opened.

If maxDx and maxDy are specified, they become the new current maximum width
and height that can be set for the dialog using the sizing border. If maxDx
is less than minDx, or maxDy is less than minDy, then the upper bound for
the dialog is removed. By default, there is no upper bound for the size of a
dialog.

Note: The automatic resizing feature of DrRexx often does not work well when
the dialog is made smaller than its original size. This is why the default
minimum size is the original size of the dialog. The Range function can be
used to establish a different minimum size in cases where the application
manages the resizing of the dialog, or the automatic resizing algorithm
produces acceptable results at sizes other than the default.

For example:
/* Allow the dialog to be sized down to
half its original dimensions: */

PARSE VALUE myDialog.Range() WITH mindx mindy .
CALL myDialog.Range mindx % 2, mindy % 2

97

Range (for a single-line edit control)

result = [dialog.][control.]Range(
length)

Length specifies the maximum number of characters that can be entered into
the edit control.

A result of 1 indicates the range was set successfully, and a result of 0
indicates that an error occurred.

For example:

/* Allow the user to enter up to 100 characters: */
CALL entry.Range 100

Range (for a horizontal or vertical scroll bar)

result = [dialog.][control.]Range(
first, last [, visible])

First and last specify the range of values that can be scrolled over.
Visible specifies how many items within the range are visible (defaults to 1
if not specified).

A result of 1 indicates the range was set successfully, and a result of 0
indicates that an error occurred.

For example:
/* Set up to scroll over a file of 100 lines, */

/* with 25 lines visible at a time: */
CALL scroll.Range 1, 100, 25

Range (for a spinbutton)

result = [dialog.][control.]Range(
low, high)
stem)

98

For a numeric spin button, low and high specify the range of values that can
be selected. For a text spin button, stem specifies the name of a stem
variable containing the values that can be selected. Stem.0® contains the
number of values, and stem.l through stem.n contain the actual values.

A result of 1 indicates the range was set successfully, and a result of ©
indicates that an error occurred.

For example:

/* Set up to spin over the range of values: */
/* 'Mr', 'Ms', and 'Mrs' */

value.0 = 3

value.l = 'Mr'
value.2 = 'Ms'
value.3 = 'Mrs'

CALL spin.Range 'VALUE'

Range (for a value set)

result = [dialog.][control.]Range(
rows, columns)

Rows and columns specify the number of rows and columns in the value set
control.

A result of 1 indicates the range was set successfully, and a result of 0
indicates that an error occurred.

For example:

/* Set up a 2 x 8 color value set table: */
CALL value.Range 2, 8

DO row =1 TO 2

DO col =1 TO 8

CALL value.Item row, column, 8*(row-1)+col-1
END

END

99

Range (for a slider)

result = [dialog.][control.]Range(
ticksl [, spacingl [, ticks2 [, spacing2]]])

Ticksl specifies the number of tick marks on scale 1 of the slider. Spacingl
specifies the spacing of the tick marks for scale 1 in pels. If 0 or
omitted, the spacing is calculated automatically based on the size of the
slider control and the number of ticks.

Ticks2 specifies the number of tick marks on scale 2 of the slider. If
omitted, scale 2 of the slider is not defined. Spacing2 specifies the
spacing of the tick marks for scale 2 in pels. If O or omitted, the spacing
is calculated automatically based on the size of the slider control and the
number of ticks.

A result of 1 indicates the range was set successfully, and a result of 0
indicates that an error occurred.

For example:

/* Set up a slider with Fahrenheit and Centigrade */
/* scales between the freezing and boiling point */
/* of water: */

CALL slider.Range 181, 0, 101, ©

Style

oldStyle = [dialog.][control.]Style(
[newStyle])

Returns the style bits for the specified window, which can be any dialog or
control. The result is always a four byte long string containing the 32
style bits for the specified control, with the low order bits in the first
byte of the string and the high order bits in the last byte of the string.

If newStyle is specified, the current style bits are replaced by newStyle,
which must also be a four byte long string containing the new style bits in
the same format.

For example:

100

/* Turn a style bit on: */
CALL control.Style BITOR(control.Style(), '01000000'X)

Font

oldFont = [dialog.][control.]Font(
[newFont])

Returns the font for the specified window, which can be any dialog or
control .

If newFont is specified, the current font is replaced by newFont.

Note: A font is specified as a string of the form: size.name, where size is
the point size, and name is the family name of the font (e.g. 10.Courier).

For example:

/* Use a Courier font: */
CALL myDialog.list.Font '10.Courier’

Color

oldColor = [dialog.][control.]Color(
[attribute] [, newColor])

Returns the specified window color attribute for any dialog or control.

Attribute specifies which window color attribute the function applies to.
The attribute consists of a string of characters, each of which specifies a
color attribute modifier. The defined attribute modifiers are as follows:

Foreground (group 1)
Background (group 1)
Active (group 2)
Inactive (group 2)
Highlight (group 2)
Disabled (group 2)
Text (group 3)

Menu (group 3)
Border (group 3)

=E2HOITHX> " +

101

The three groups represent more or less disjoint sets of attributes. In
forming an attribute name, no more than one character from each group should
be used . However, not all combinations of characters specify a valid color
attribute . The list of valid color attribute character combinations is as
follows:

+ Foreground color

Background color

A Active color

I Inactive color

AT+ Active text foreground color
AT- Active text background color
IT+ Inactive text foreground color
IT- Inactive text background color
H+ Highlight foreground color

H- Highlight background color

D+ Disabled foreground color

D- Disabled background color

M+ Menu foreground color

M- Menu background color

MH+ Menu highlight foreground color
MH- Menu highlight background color
MD+ Menu disabled foreground color
MD- Menu disabled background color
B Border color

Note: The order of the characters in attribute does not matter.

Not all windows support all color attributes. The most commonly supported
attributes are foreground and background color. If attribute is omitted, it
defaults to background color.

If newColor is specified, the specified window color attribute is replaced
by newColor.

Note: A color is specified as a string of the form:
#index

or #red green blue

where index is a color index, and red, green and blue are the color
components of an RGB triplet (each component should be in the range 0 to
255).

The result of the function is also one of these two forms, depending on
which form was originally used to set the corresponding color attribute.

Note: If no color attribute has been specified for a control, the null
string is returned as the result.

For example:

102

/* Set an entry field to a black background with white text: */
CALL myDialog.entry.Color , '#0 0 0O'
CALL myDialog.entry.Color '+', '#0'

ID

id = [dialog.][control.]ID()

Returns the ID number of the specified window, which can be any dialog or
control.

Note: The ID number is the same number assigned to the control or dialog in
the editor using the Name window.

For example:

/* Use the ID number as a digit: */
num = 10 * num + ID()

Drag

oldDragData = [dialog.][control.]Drag(
[newDragData])

Returns the drag information associated with the specifified window, which
can be any control.

Note: The format of the function for container controls is described in the
section on Drag (for a container).

If newDragData is specified, the current drag information is replaced by
newDragData.

If newDragData is not the null string, then the specified window is enabled
for dragging. That is, the user will be able to drag the control and drop it
on other controls that have been enabled for dropping.

If newDragData is the null string, the specified window can not be dragged .
This is the initial default for all controls.

103

The format of the drag string is: typel,type,...,typel[:format][=datal],
where:

type is a string denoting the type of data being dragged (e.g. Plain text).
More than one type can be specified, if desired, with each succeeding type
separated by a comma. When the control is being dragged, it can only be
dropped on controls which accept at least one of the specified types. The
first type is called the true type, and some non-DrRexx controls may only
allow dropping controls whose true type they accept.

format is a string denoting the format of the data being dragged. While 0S/2
allows any number of formats, DrRexx only supports two: STRING and FILE .
Only the first character of the format (i.e. S or F) need be specified . If
omitted, it defaults to STRING.

The STRING format denotes data passed as a REXX string (i.e. its format is
simply a REXX string). It is intended mainly for exchanging information
between DrRexx applications, although it can be supported by non-DrRexx
applications .

The FILE format denotes data passed in an 0S/2 file (actually, only the name
of the file is passed as part of the drag and drop operation). This format
is compatible with files represented by the Workplace Shell, and so may
allow drag and drop operations between DrRexx applications and some
Workplace Shell objects.

data is a string containing the information to be passed to the target of a
drag and drop operation. If the format is STRING, it can be any REXX string;
if the format is FILE it should be the name of an 0S/2 file. If omitted, its
default depends upon the type of control being dragged. For most controls,
the default is the value returned by the Text function at the start of the
drag operation . The exceptions to this rule are as follows:

Value set Defaults to the value of the item under the pointer at the start
of the drag operation (i.e. the value that would be returned by the Item
function for the value set item being pointed at).

List box Defaults to the text of the currently selected item (i.e. the value
that would be returned by the Item function for the selected item). If more
than one item is selected, each item is dragged separately. That is, the
target will receive a Drop event for each separate item. If no items are
selected, dragging is disabled.

Single-line edit control, multi-line edit control Defaults to the current
contents of the edit control unless some text is selected, in which case it
defaults to the selected text.

Notebook, slider, horizontal scroll bar, vertical scroll bar Defaults to the
value that would be returned by the Select function at the start of the drag
operation.

When a drag operation begins, DrRexx automatically determines the bitmap

104

used to represent the data based on the type of control being dragged. For
most controls, the bitmap is the same one used by DrDialog to represent the

type of the control (e.qg. is used to represent a pushbutton control).
However, there are a few cases where that rule does not apply:

Value set If the value set item being dragged is a bitmap (i.e. not a color

O
or gext string), the item's bitmap is used. Otherwise the ___J bitmap is
used.

Icon button The bitmap that appears on the button is used. If the name of
the bitmap begins with '=' then the bitmap is left at its actual size, and
is not scaled to the size of an standard icon. In addition, the icon button
control is hidden at the beginning of a drag operation. If the drag
operation fails , the button is automatically made visible again; otherwise
it is the application 's responsibility to make the button visible again
(this allows the application to easily simulate the button actually being
dragged to a new location).

Billboard The bitmap that appears on the billboard is used. If the name of
the bitmap begins with '=' then the bitmap is left at its actual size, and
is not scaled to the size of an standard icon. In addition, the billboard
control is hidden at the beginning of a drag operation. If the drag
operation fails , the billboard is automatically made visible again;
otherwise it is the application's responsibility to make the billboard
visible again (this allows the application to easily simulate the billboard
actually being dragged to a new location).

Specifying a non-null drag string allows a DrRexx control to be dragged. In
order for it to be successfully dropped, the target control must be enabled
for dropping. For a DrRexx application this means that the Drop function has
been issued for the target control with a non-null drop string. Dropping a
compatible object on it will then generate a Drop event for the target
control.

Note: It is possible for non-DrRexx applications to allow DrRexx controls to
be dropped on them.

For example:

/* Allow a pushbutton to be dragged: */
CALL button.Drag 'Command'’

/* Prevent a pushbutton from being dragged: */
CALL button.Drag "'

/* Allow a list box of file names to be dragged: */
CALL list.Drag 'Plain text:FILE'

/* Define a draggable 'debug' control: */
CALL text.Drag 'REXX code:STRING=SAY Control()"

105

Drag (for a container)

oldDragbData = [dialog.][control.]Drag(
item, [newDragDatal])

Returns the drag information associated with the specified container control
item.

If newDragData is specified, the current drag information for item is
replaced by newDragData.

For more information about the format and meaning of the drag string, refer
to the description of the Drag function that applies to other DrRexx control
types

Note that, for a container control, if no data is specified in the drag
string, the associated item label is passed as the data when the item is
dragged.

The major difference between a container control and other DrRexx controls
that can be dragged is that a container control can specify drag information
independently for each item it contains, not just globally for the container
as a whole.

Also, because a container may contain several draggable items, it is
possible to drag more than one container item at a time. When the user
begins a drag operation, DrRexx checks to see if the item to be dragged is
selected. If not, only the item pointed at is dragged. If it is selected,
then both the item pointed at and all other selected items in the container
are dragged.

Note: If more than four items are selected, they will all be dragged, but
only four bitmaps will appear in the drag image. The bitmaps used are the
ones associated with the items being dragged.

Refer also to the section on the Drop event for information about the data
the target DrRexx control receives when the container items are dropped on
it.

For example:

/* Add a file item and make it draggable: */

item = cnr.Add fileName, 'BITMAP:#61'

CALL cnr.Drag item, 'Plain text:FILE'

/* Disable the item from being dragged: */
CALL cnr.Drag item, ''

106

/* Create a command item and make it draggable: */
item = cnr.Add 'Merge', 'BITMAP:#45'
CALL cnr.Drag item, 'Command’

Drop

oldDropData = [dialog.][control.]Drop(
[newDropData])

Returns the drop information associated with the specifified window, which
can be any control.

Note: The format of the function for container controls is described in the
section on Drop (for a container).

If newDropData is specified, the current drop information is replaced by
newDropData.

If newDropData is not the null string, then the specified window is enabled
for dropping. That is, the user will be able to drop controls that are
compatible with the drop criteria onto the specified control.

If newDropData is the null string, the specified window can not be dropped
on . This is the initial default for all controls.

The format of the drop string is: typel,type,...,typell
:format] [=operation], where:

type is a string denoting the type of data that can be dropped (e.g. Plain
text). More than one type can be specified, if desired, with each succeeding
type separated by a comma. Only dragged objects which have at least one
matching type can be dropped on the control. The special type ANY can also
be used to indicate that any type of data can be dropped on the control. If
specified, it must be the only type specified.

format is a string denoting the format of the data that can be dropped.
While 0S/2 allows any number of formats, DrRexx only supports two: STRING
and FILE. In addition, ANY can be specified to indicate that either format
is acceptable. Only the first character of the format (i.e. S, F or A) need
be specified. If omitted, it defaults to STRING. Only dragged objects which
match the specified format can be dropped on the control.

The STRING format denotes data passed as a REXX string (i.e. its format is
simply a REXX string). It is intended mainly for exchanging information
between DrRexx applications, although it can be supported by non-DrRexx
applications .

107

The FILE format denotes data passed in an 0S/2 file (actually, only the name
of the file is passed as part of the drag and drop operation). This format
is compatible with files represented by the Workplace Shell, and so may
allow drag and drop operations between DrRexx applications and some
Workplace Shell objects.

operation is a string describing the type of operation that will be
performed if an object is dropped on the control. The possible values are:
MOVE, COPY, LINK or ANY. Only the first letter of the operation need be
specified (i .e. M, C, L or A). If omitted, the default is MOVE. Only
dragged objects which will allow the specified operation can be dropped on
the control.

Note: No check is made to ensure that the specified operation actually
occurs when an object is dropped.

Specifying a non-null drop string allows a DrRexx control to be dropped on .
In order for it to be successfully dropped on, there must be a source object
enabled for dragging. For a DrRexx application this means that the Drag
function has been issued for the source control with a non-null drag string.
Dropping a compatible object on it will then generate a Drop event for the
target control.

Note: It is possible for non-DrRexx applications to enable controls that can
be dropped on DrRexx controls. In particular, Workplace Shell file objects
can typically be dropped on DrRexx controls which accept the FILE format and
an appropriate type, or types (e.g. ANY, Plain text, DrRexx.RES).

For example:
/* Allow user to drop customers or */
/* commands onto a listbox: */

CALL list.Drop 'Customer,Command’

/* Disallow user from dropping onto a listbox: */
CALL list.Drop '

/* Allow user to drop .BMP files onto a */
/* billboard controls: */

CALL bmp.Drop 'Bitmap:FILE'

/* Allow user to drop any kind of object */

/* onto a list box: */
CALL list.Drop 'ANY:ANY=ANY'

Drop (for a container)

oldDropData = [dialog.][control.]Drop(
item, [newDropDatal])

108

Returns the drop information associated with the specified container control
item. If item is 0, it refers to the container itself, not a particular item
in the container. That is, the empty space in a container not occcuped by a

container item can also be the target for a drop operation if desired.

If newDropData is specified, the current drop information for item is
replaced by newDropData.

For more information about the format and meaning of the drop string, refer
to the description of the Drop function that applies to other DrRexx control
types

The major difference between a container control and other DrRexx controls
that can be dropped on is that a container control can specify drop
information independently for each item it contains, not just globally for
the container as a whole.

Refer also to the section on the Drop event for information about the data
the container control receives when an object is dropped on it.

Note: An object is dropped on a particular container item, or on the
container itself. Target emphasis (i.e. a box drawn around the item or
container) is drawn to indicate the current drop target. When an object is
dropped on the container, one or more Drop events are generated for the
container. Information in the associated EventData for each Drop event
describes the particular item within the container that was dropped on.

For example:

/* Create a command item to delete */
/* customer entries: */

item = cnr.Add 'Delete', 'BITMAP:#54'
CALL cnr.Drop item, 'Customer’

/* Disable the command item: */
CALL cnr.Drop item, "'

/* Create an item which allows DrDialog or */
/* DrRexx .RES files to be dropped on it: */

item = cnr.Add 'REView', 'BITMAP:#23'
CALL cnr.Drop item, 'DrDialog.RES,DrRexx.RES:FILE'

IsDefault

[dialog.][control.]IsDefault(
['Object' | 'Say' | 'Dialoghint' | 'Controlhint'])

109

Makes the specified window the default window.

If no argument is given, or the argument is Object, then the specified
window becomes the default window for all subsequent window function calls
with omitted references until the next event or call to IsDefault.

If Say is specified as the argument, then all subsequent REXX SAY statements
will direct their output to the specified window. This include implicit SAY
output via the DrRexx SAY subcommand environment.

If Dialoghint is specified as the argument, then the hint text associated
with dialogs will be displayed in the specified window whenever the pointer
passes over a dialog. The window specified should be capable of displaying
text. By default, dialog hints are not displayed.

If Controlhint is specified as the argument, then the hint text associated
with controls will be displayed in the specified window whenever the pointer
passes over a dialog control. If no window has been specified to display
dialog hints, then dialog hints will also be displayed in the same window.
The window specified should be capable of displaying text. By default,
control hints are not displayed.

Note: Only the first letter of the argument need be specified (i.e . 0, S, D
or C).

For example:

CALL myDialog.list.IsDefault
DO i =1TO0 10

CALL Add i

END

CALL Select 0

is equivalent to:
DO i =1TO0 10
CALL myDialog.list.Add i

END
CALL myDialog.list.Select 0O

Timer

rc = [dialog.][control.]Timer(
[interval])

110

Starts or stops a timer for the specified window, which must be a dialog.

If no argument is specified, the current timer, if any, 1is canceled (i.e .
stopped). If an argument is specified, a timer is started which will
generate a Timer event every interval milliseconds. An interval of 0
specifies that the timer events should be generated as fast as possible.

A result of 1 indicates the request was successful and a result of 0O
indicates the request failed.

For example:
/* Generate a timer event once a second: */
CALL myDialog.Timer 1000

/* Cancel any previous timer: */
CALL D10O.Timer

View

oldView = [dialog.][control.]View(

['Bitmap' | 'Name' | 'Flowedname' |
'Text' | 'Column' | 'Detail' |
‘Outline’ | 'Hierarchy']

[, ['<|>_;"']title],
[, cxBitmap, cyBitmap]
[, expandBitmap, collapseBitmap])

Returns the current view for the specified window, which must be a container
control.

The first argument specifies the view to use for the container:

Omitted No change is made to the current view.

Bitmap Display items as bitmaps with labels centered below them.

Name Display items as a single column of bitmaps with labels on the right.
Flowedname Displays items as one or more columns of bitmaps with labels on
the right. The columns are filled top-to-bottom, left-to-right.

Text Displays items as a single column of labels, with no bitmaps.

Column Displays items as one or more columns of labels, with no bitmaps. The
columns are filled top-to-bottom, left-to-right.

Detail Displays items one per line, with each item consisting of one or more
columns of text or bitmaps. The container may also be split into two
independent groups of columns, each with its own scroll bar and a movable
separator between the two groups.

OQutline Displays the items as an outline, with child items indented to the

111

right of parent items. Levels in the outline may be expanded or collapsed
independently. Unlike the Hierarchy view, no lines are drawn to indicate the
levels in the structure. Individual items in the outline are displayed as
bitmaps with their labels on the right.

Hierarchy Displays the items as a hierarchy, with child items indented to
the right of parent items. Levels in the outline may be expanded or
collapsed independently. Lines are drawn to the left of the items to
indicate the levels in the structure. Individual items are displayed as
bitmaps with their labels on the right

Only the first letter (i.e. B, F, N, T, C, D, 0 or H) of the first argument
need be specified.

Title specifies the title to display at the top of the container. If not
specified, the current title is not changed. The title may optionally begin
with one or more of the following special formating characters:

None The title is centered with no separator line.

< The title is left justified.

| The title is centered.

> The title is right justified.

_ A separator line is drawn between the title and the rest of the container.
; End of the formatting characters; the title begins with the next character
. This character is optional. If not specified, the title begins with the
first character not in this list.

If title is specified, but consists only of formating characters (e.g .
‘;'), the current title, if any, is removed from the container.

CxBitmap and cyBitmap specify the size to which all bitmaps displayed in the
container are scaled. If not specified, no change is made to the current
bitmap size . If both are specified as 0, the default system bitmap size is
used.

ExpandBitmap and collapseBitmap specify the bitmaps to use in the Outline or
Hierarchy views to indicate that an item may be expanded or collapsed,
respectively. If not specified, no change is made to the current bitmaps
used for this purpose . If specified, both should be strings of the form:
dll:#resource, where resource is the resource number of the bitmap within
the DLL specified by dll (e.g. BITMAP:#50). Alternatively, the form:
filename. BMP can also be used, where filename.BMP is the name of a file
containing a bitmap in .BMP format.

For example:
/* Display the hierarchy view of a container: */

CALL container.View 'H', '< ;Hierarchy view',,,
'MYDLL:#1', 'MYDLL:#2'

112

SetStem

[dialog.][control.]SetStem(

[stem]
[, "[+/-1Select' | '[+/-1Mark' |
'Format' | 0 | item])

Sets a list of values for the specified window, which must be a container
control.

The list of values to be set are in the stem variable specified by stem. If
stem is omitted, STEM is used as the name of the stem variable.

Stem.0® contains the number of values in the list to be set. Stem. 1 through
stem.n contain the individual values to set. The type of values set depends
on the second argument as follows:

[+]Select All items in stem are selected.

-Select All items in stem are unselected.

[+IMark All items in stem are marked.

-Mark All items in stem are unmarked.

Format The items in stem are used to determine the number, format and
content of each column in the detail view of the container. The number of
columns of data is specified by stem.0. Stem.1l through stem.n specify the
format and content of columns 1 through n. Each item is a string of 0 or
more of the following characters:

= Column will display a bitmap. If specified, column values should be
strings of the form: dll:#resource, where resource is the resource number of
the bitmap within the DLL specified by dll (e.g. BITMAP:#50). Alternatively,
the form: filename.BMP can also be used, where filename.BMP is the name of a
file containing a bitmap in .BMP format. If not specified, the column data
is assumed to be text.

~ Column is invisible (i.e. not shown).

X Column data is read-only. If not specified, the user can edit the data in
this column if it is not a bitmap.

. This column is the last column in the left part of the split view. If more
than one column format string contains a period, the highest numbered column
is the one used as the split point. If no column format string contains a
period, the container will not display a split view.

~ Column data is top aligned.

Column data is bottom aligned.

(minus sign) Column data is vertically centered (the default).

Column data is left aligned.

Column data is right aligned.

Column data is horizontally centered (the default).

(underscore) Column title will have a separator drawn below it.

Column data will have a vertical separator drawn on the right.

— VvV A<

113

Note: If the detail view is used in an application, the format of the column
data must be specified prior to adding any items to the container. Once the
format has been specified, subsequent attempts to change the following
aspects of the format will be ignored:

oThe number of columns
oThe format of the column data (i.e. bitmap or text)

All other aspects of the column format can be changed as needed.

0 The values in stem are used to set the column titles. Note that the column
titles need not have the same format as the data they describe (e.g. the
column data could be text, while the column title is a bitmap). If a title
value begins with a '=', then the title is assumed to be a bitmap specified
by a string of the form: =dll:#resource, where resource is the resource
number of the bitmap within the DLL specified by dll (e.g. =BITMAP:#50)
Alternatively, the form: =filename.BMP can also be used, where filename.BMP
is the name of a file containing a bitmap in .BMP format. If the title value
does not begin with a '=', the title is assumed to be text .

item The values in stem are used to set new values for the column data of
the item specified by item.

If the second argument is omitted, it defaults to Select.

For the first three cases, only the first letter of the second argument need
by specified (i.e. S, M or F).

For example:

/* Set up the detail view format: */

format.0 = 3 /* 3 columns of data */

format.1 = '=_!' /* Bitmap, horizontal/vertical separators */
format.2 = '. !'' /* Last column in split view, H/V seps */
format.3 = '> !' /* Right aligned, H/V seps */

CALL container.SetStem 'FORMAT', 'F'

/* Set up the detail view titles: */

title.0 = 3

title.1l = 'Type'
title.2 = 'Part #'
title.3 = 'Quantity'

CALL container.SetStem 'TITLE', 0

/* Add an item: */

item = container.Add('Widget')
data.0 = 3

data.l = 'BITMAP:#27'

data.2 = '12-456AQ"

data.3 = '52'

CALL container.SetStem 'DATA', item

/* Mark all currently selected items: */
CALL container.GetStem 'ITEM', 'S'

114

CALL container.SetStem 'ITEM', 'M'

GetStem

[dialog.][control.]GetStem(
[stem]
[, 'Select' | 'Mark' | 'Cursor' | 0 | item])

Returns all requested values for the specified window, which must be a
container control.

The values are returned in the stem variable specified by stem. If stem is
omitted, STEM is used as the name of the stem variable.

On return, Stem.0® contains the number of values returned. Stem.1l through
stem.n contain the individual values returned. The type of values returned
depends on the second argument as follows:

Select All currently selected items are returned in stem.

Mark All currently marked items are returned in stem.

Cursor The item containing the cursor is returned in stem.

0 The column titles for the detail view are returned in stem.

item The values for each of the columns displayed in the detail view of item
are returned in stem.

If the second argument is omitted, it defaults to Select.

For the first three cases, only the first letter of the second argument need
by specified (i.e. S, M or C).

For example:

/* Delete all currently selected items: */
CALL container.GetStem

DO i =1 TO stem.0

CALL container.Delete stem.i

END

/* Mark all currently selected items: */

CALL container.GetStem 'ITEM', 'S’
CALL container.SetStem 'ITEM', 'M'

115

Controls

[dialog.][control.]Controls(
[stem])

Returns the names of all controls for the specified window, which can be any
dialog or control.

The names are returned in the stem variable specified by stem. If stem is
omitted, CONTROLS is used as the name of the stem variable.

Stem.0 contains the number of names returned. Stem.l through stem .n contain
the names of each control for the specified window. If a control was not
assigned a name using the DrDialog Name window, a name of the form Dnnn (
for dialogs) or Cnnn (for controls), where nnn is the numeric ID of the
dialog or control, is returned instead. Stem.l always contains the name of
the dialog .

The function may be applied to a dialog or to any control contained within
the dialog. In either case, the result returned is always the list of names
for the entire dialog.

For example:

/* Put all control names into a list box: */

CALL myDialog.Controls

DO i =1 TO controls.0

CALL myDialog.list.Add controls.i
END

Classes

[dialog.][control.]Classes(
[stem])

Returns the class names of all controls for the specified window, which can
be any dialog or control.

The class names are returned in the stem variable specified by stem. If stem
is omitted, CLASSES is used as the name of the stem variable.

Stem.0® contains the number of class names returned. Stem.1l through stem.n

116

contain the class names of each control for the specified window . Stem.1l

always contains the class name of the dialog (i.e. DIALOG) . The order of

the class names returned corresponds to the order of the names returned by
the Controls function.

The function may be applied to a dialog or to any control contained within
the dialog. In either case, the result returned is always the list of class
names for the entire dialog.

For example:

/* Put all control names and classes into a list box: */
CALL myDialog.Controls

CALL myDialog.Classes

DO i =1 TO controls.0

CALL myDialog.list.Add controls.i 'is a' classes.i

END

DrRexx menu functions

Besides the window functions for interacting with Presentation Manager dialogs and controls, DrRexx also
defines a number of functions for interacting with drop-down menus. Each of these menu functions is invoked
using an object oriented syntax style similar to the window functions:

[dialog.][label.]function (arguments)

where dialog refers to the name assigned to a dialog using the DrDialog Name
window, and label refers to the label assigned to one or more menu items
using the _drop-down menu tool. For example, the statement:

CALL myDialog.Save.Disabled 1

might be used to disable all menu items labeled Save in the drop-down menu
for dialog myDialog.

Note: Unlike window functions which apply to a single dialog or control ,
menu functions apply to all menu items with a specified label within a drop-

down menu.

The use of dialog names and labels is optional. If either or both are
omitted, the following rules apply:

oIf only dialog is omitted, the function applies to all menu items with the
specified label within the dialog in which the event occurred.

117

oIf both dialog and label are omitted, the function applies to the menu item
generating the event.

Note: In the case of the Init procedure used to start a DrRexx application,
there is no event. Therefore, any menu function calls it contains must use a
fully qualified name. This is the only exception to the above set of rules .

If no name was assigned to a dialog using the DrDialog Name window, Dnnn,
where nnn is the ID number of the dialog, may be used in place of the dialog
name (e .g. D100.Save.Disabled(1)).

As with window functions, DrRexx also supports the following variation for
invoking menu functions:

functionFOR(dialog, label [, arguments])

where dialog and label are as described above. For example:

CALL DisabledFor 'myDialog', 'Save', 1

would be the equivalent way of writing the previous example using the
alternate syntax style.

The main use of this alternate style is in cases where the dialog and label
name are determined dynamically at run-time, rather than statically at edit
time .

The defined menu functions are as follows:

Name Description

MenuPopUp Display a pop-up menu

MenuChecked Get/Set a menu item's checked state
MenuDisabled Get/Set a menu item's disabled state
MenuText Get/Set a menu item's text

MenuPopUp

rc = [dialog.][Llabel. JMenuPopUp(
[initial])

Displays the specified menu item as a pop-up menu at the current pointer
position. Returns 1 if the pop-up menu is displayed successfully; and 0
otherwise . The specified menu item must be a sub-menu within the specified
dialog's drop-down menu.

118

If Initial is specified, it should be the label of a menu item within the
specified sub-menu. The pop-up menu will be displayed with the initial menu
item centered under the pointer and already selected. Note that the
specified menu item must not be a static menu item (i.e. it must have some
REXX code associated with it).

If initial is not specified, the pop-menu will be displayed with the pointer
in the lower-left hand corner of the menu and the first non-static menu item
already selected.

For example:

/* Display a pop-up menu: */
CALL menuDialog.options.MenuPopUp

/* Display a pop-up menu with the 'default' item selected: */
CALL menuDialog.options.MenuPopUp 'default’

MenuChecked

oldState = [dialog.][label.]MenuChecked(
[newState])

Returns the current checked state of the specified menu items. A 0 means the
menu items are not checked, and a 1 means they are checked.

newState specifies the new checked state for all specified menu items, and
should be one of the two values described above.

For example:

/* Toggle the current menu item's checked state: */
CALL MenuChecked 1 - MenuChecked()

/* 'Check' a menu item: */
CALL myDialog.Attached.MenuChecked 1

MenuDisabled

oldState = [dialog.][label.]MenuDisabled(
[newState])

119

Returns the current disabled state of the specified menu items. A 0 means
the menu items are not disabled, and a 1 means they are disabled.

newState specifies the new disabled state for all specified menu items, and
should be one of the two values described above.

For example:

/* Disable all 'save' menu options: */
CALL Save.MenuDisabled 1

MenuText

oldText = [dialog.][label.]MenuText (
[newText])

Returns the current text of the specified menu items.

newText specifies the new text for all specified menu items. A '~ '
character in newText can be used to specify a keyboard accelerator (e.g
'~Save' specifies that alt-S is the keyboard accelerator character for this
menu item).

For example:

/* Include the file name in the save option: */
CALL Save.MenuText '~Save' filename

DrRexx concurrency functions

A DrRexx application can perform concurrent execution of more than one task at a time using the following
functions:

Name Description

Start Start a new concurrent thread of execution
Stop Stop an existing concurrent thread of execution
Result Wait for a concurrent thread to complete
Notify Notify the main thread of an event

Use Get/Release exclusive use of a shared resource
Val Get/Set the value of a shared variable

Sleep Suspend execution for a specified time

120

The following sections describe each of these functions in detail. In addition, the Concurrent programming
example section gives a complete example that illustrates how these functions can be used together in writing a
program.

Start

tid = Start(label [, argument])

Starts a new concurrent thread of execution and returns the ID of the new
thread.

The new thread begins execution at label, which should either be the label
of a global procedure or statement in the external REXX code for the
program. If argument is specified, it will be passed to the new thread as
its first argument. If argument is not specified, then the new thread's
first argument is the null string . The second argument to the new thread is
always its own thread ID.

Threads started with the Start function have a slightly different set of
capabilities than the main thread used to start a DrRexx application. In
particular, started threads only have access to the following DrRexx
functions:

oStart

oStop

oResult
oNotify

oUse

oVal

oSleep
oClipboard
oDrRexxVersion

Any started thread attempting to use a DrRexx function not in this list will
generate a Function not found error.

Trace and SAY output for a started thread is handled in exactly the same way
as for the main DrRexx thread (i.e. it will appear in the Run-time window
unless directed to another control using the IsDefault function.

If a started thread attempts to read from an empty data queue, a HALT
condition will be raised (unlike the main thread, which will display a
pop-up dialog for user input).

Other than these restrictions, started threads have full access to all
features and facilities of the REXX language.

For example:

121

/* Start a new thread to make a list
of all files on the C: drive: */
CALL Start 'FileList', 'C:*.*'

/* List all files in a specified subtree

and put them in the shared variable 'files': */
FilelList:

PARSE ARG fileSpec

CALL SysFileTree fileSpec, 'list', 'FOS'

DO i = 1 TO list.0

CALL Vval 'files.'i, list.1i

END

CALL Notify 'MyDlg', 'ListDone', 'files'

RETURN

Stop
rc = Stop(tid)

Stops execution of the thread whose ID is tid. Returns 1 if successful, and
0 otherwise.

Note: This function should be used with caution since it immediately aborts
the specified thread without allowing it to perform any clean-up processing
For example:

/* User is exiting application,

cancel the background thread: */
CALL Stop backgndTid

Result
value = Result([tid])

Waits for the thread whose ID is specified by tid to complete processing and
returns its result. If tid is not specified, it waits for the next thread to
complete processing, and returns its result.

122

In all cases, the variable tid is set equal to the ID of the thread that
completed processing. This is most useful in the case where tid is not
specified as an argument.

For example:

/* Begin counting files matching a
specified pattern: */
agent = Start('CountFiles', fileSpec)

/* Do additional processing here */

/* Now wait for the result */
files = Result(agent)

/* Count number of files matching a

file spec in a specified subtree: */
CountFiles:

PARSE ARG fileSpec

CALL SysFileTree fileSpec, 'files', 'FOS'
RETURN files.0

Notify
Notify(dialog [, event] [, data])

Generates a Notify event for dialog, which must be the name of a currently
open dialog.

If specified, event and data are passed as data for the Notify event and can
be retrieved within the Notify event handler using the EventData function.
Each defaults to the null string if not specified.

For example:

/* Start a new thread to delete a list of files: */
CALL Start 'DeleteList', 'C:\TEMP*.*'

/* Delete all specified files in a directory
and notify after each delete, and when
completed: */

DeletelList:

PARSE ARG fileSpec

CALL SysFileTree fileSpec, 'files', 'FO'

DO i =1 TO files.0

'DEL' files.i

123

CALL Notify 'MyDlg', 'Delete', files.1i
END

CALL Notify 'MyDlg', 'Done’

RETURN

Use
rc = Use(name [, request])

Gets or releases exclusive access to the resource specified by name, which
can be any arbitrary string designating a logical resource which multiple
concurrent threads of execution may be competing to use.

If request is not 0, the requesting thread is suspended until the resource
specified by name is available. When control returns, the current thread is
marked as the owner of the resource until it releases control by invoking
Use with a 0 request argument. ALl other threads requesting use of the same
resource will be suspended until the owning thread releases it.

If request is 0, the requesting thread releases control of the specified
resource. If any other threads are waiting on the same resource, one of them
will be allowed to resume execution and become the new owner of the
resource. For this operation to succeed, the requesting thread must already
own the resource.

If request is not specified, the current status of the resource is
immediately returned as the result. A result of 1 indicates that the
resource is currently owned, and a result of 0 indicates that the resource
is not currently owned

For example:

/* Read the next element from the

REXX data queue (where multiple

threads are reading simultaneously): */
CALL Use 'Q', 1

DO WHILE queued() = 0

CALL Sleep 100

END

PULL data

CALL Use 'Q', ©

124

Val

value = Val(name [, value])

Gets and optionally sets the value associated with a specified name that is
shared across all concurrent threads of execution.

Each concurrent thread has a completely separate set of REXX variables from
every other thread. While this is useful in general, there may be instances
when concurrent threads need to share data. The Val function can be used to
accomplish this

Val allows arbitrary value strings to be associated with arbitrary name
strings. Each concurrent thread has access to the same set of name/value
pairs using the Val function. Access to the names and values are serialized
so that no two threads can access a given name at the same time. The Use
function can be used to further restrict access to a variable or group of
variables over longer periods of time than a single access.

If value is specified, it becomes the new value associated with name, and is
returned as the result.

If value is omitted, the current value associated with name is returned as
the result. If no value has yet been associated with name, the null string
is returned.

For example:

/* Start a new thread to make a list
of all files on the C: drive: */
CALL Start 'FilelList', 'C:*.*'

/* List all files in a specified subtree

and put them in the shared variable 'files.i': */
FilelList:

PARSE ARG fileSpec

CALL SysFileTree fileSpec, 'list', 'FO0S'

DO i =1 TO list.0

CALL Val 'files.'i, list.i

END

CALL Notify 'MyDlg', 'ListDone', 'files'

RETURN

125

Sleep

Sleep([time])

Causes the requesting thread to suspend execution for time milliseconds.

If time is not specified, it allows the next ready thread to execute. The
operating system will return control to the suspended thread as soon as its
turn comes up again.

For example:

/* Wait for some work to process

in the REXX data queue: */

DO FOREVER

DO WHILE queued() = 0

CALL Sleep 100

END

PULL workItem

/* Process the work item read from the queue... */
END

Concurrent programming example

To illustrate how the DrRexx concurrency functions can be used in writing an application, consider the following
example:

Write a program that counts lines in a group of files. Assume there is a command, COUNT, which accepts a
single file name and returns as its return code the number of text lines in the file.

First, look at the following non-concurrent solution to this problem:

/* Usage: total = CountLines(fileSpec) */

/* where 'fileSpec' may contain wildcard characters */
/* Returns: Total number of lines in all files */
/* matching 'fileSpec' */

CountLines: PROCEDURE

PARSE ARG fileSpec

CALL SysFileTree fileSpec, 'files', 'FO'

total = 0

DO i =1TO files.O

"COUNT' files.i

total = total + rc

END

126

RETURN total

While the above procedure is simple and straightforward, it has two
potential problems. First, if there are a large number of files, it may take
a long time to count all the lines. While the DrRexx application is busy
performing this routine , it cannot be processing other requests from the
user (e.g. aborting the loop if the user gets tired of waiting for the
result). Secondly, it may not be fully utilizing the capabilites of the
user's machine. Since each file is counted sequentially, there is no
overlapping of file I/0 and processing.

The following code illustrates how both of these problems can be overcome
using the DrRexx concurrency functions:

/* Usage: CountLines(fileSpec) */

/* where 'fileSpec' may contain wildcard characters */
/* Returns immediately. The application is notified */
/* of the total later via a 'Notify' event */
CountLines: PROCEDURE

PARSE ARG fileSpec

CALL Start 'Manager', fileSpec

RETURN

Manager:

/* Number of concurrent 'counter' threads: */
threads = 5

PARSE ARG fileSpec

CALL SysFileTree fileSpec, 'files', 'FO'
total = 0

DO i =1 TO0 files.0O

QUEUE files.i

END

DO i = 1 TO threads

thread.i = Start('Counter')

END

total = 0

DO i = 1 TO threads

total = total + Result(thread.i)
END

CALL Notify 'MyApp', 'Total', total
RETURN

Counter:

total = 0

DO FOREVER

CALL Use 'QUEUE', 1

IF queued() THEN PULL file

ELSE file = "'
CALL Use 'QUEUE', ©
IF file = '' THEN RETURN total

127

"COUNT' file
total = total + rc
END

To help better understand this example, a brief explanation of each of the
above procedures follows:

CountLines Starts another thread of execution to manage the counting process
and passes it the fileSpec to be processed. It then returns immediately to
the caller. The final total will later be sent to the main application
thread via a Notify event.

Manager This is the thread that manages the counting process. It consists of
four major sections:

1.Enumerate the files to be counted and queue them to the REXX data queue
for processing by the counting threads.

2.Start a fixed number of counting threads and save their ID's.

3.Total the results returned by each of the counting threads.

4 .Notify the main application thread of the final total.

Counter An arbitrary number of threads are started to count lines. Each
thread is a simple loop that:

oReads the name of a file to count from the REXX data queue

oIf the queue is empty, returns the total number of lines it has counted
o0therwise, it adds the number of lines in the current file to its total and
returns to step 1.

There are a number of interesting things to note about this solution
compared to the first:

oIt is significantly longer. This is probably true of most concurrent
programs when compared to their non-concurrent counterparts. Concurrency
often comes at the price of additional complexity and coding and debugging
time.

oThe use of the REXX variable total in both Manager and Counter does not
create a problem. Each routine executes on its own thread and has a separate
name space from the other (this is also true for the multiple instances of
Counter running simultaneously).

oNote that each instance of Counter must obtain exclusive access to the REXX
data queue (via the Use function) prior to examining it. Failure to do so
might result in race conditions and lead to erratic program behavior. In
particular, if between the time thread 1 saw that there was data on the
queue and read it thread 2 got control and read the last queue element, it
would cause thread 1 to halt abnormally by reading an empty queue. As a
result, thread 1 would not correctly return its total, creating an error in
the final tally. Note also that it would be a serious error to have written
Counter as follows:

Counter:

128

total = 0

DO FOREVER

CALL Use 'QUEUE', 1

IF queued() = 0 THEN RETURN total
PULL file

CALL Use 'QUEUE', ©

"COUNT' file

total = total + rc

END

The error is that when the queue becomes empty, Counter returns without
releasing its use of the REXX data queue. As a result, all other instances
of Counter still running will go into an infinite wait the next time they
attempt to gain access to the REXX data queue. Such errors are easy to make
and sometimes difficult to find when writing concurrent applications.

Also note that while the following version of Counter is valid, it too
contains a serious problem:

Counter:

total = 0

DO FOREVER

CALL Use 'QUEUE', 1
IF queued() THEN DO
PULL file

"COUNT' file

total = total + rc
END

ELSE file = "'

CALL Use 'QUEUE', ©
IF file = '' THEN RETURN total
END

The problem in this case is that the REXX data queue is not released until
after the current file has been processed. As a result, this eliminates
nearly all overlapping of file I/0 and processing time, and ends up being
just a more complicated version of the original non-concurrent solution.

DrRexx miscellaneous functions

In addition to the window functions, the DrRexx run-time environment also defines the following additional
REXX functions:

Name Description

ModalFor Return the result of a modal dialog

EventData Return the data associated with the current event
Event Return the name of the current event

Control Return the name of the current event's control

129

Class Return the class of the current event's control

Dialog Return the name of the current event's dialog

Dialogs Return the names of all defined dialogs

FilePrompt Return the name of a file selected using the system file dialog
Clipboard Get/Set the contents of the system clipboard

ScreenSize Returns the size of the display screen

DrRexxVersion Get the DrRexx version

ModalFor

result = ModalFor(dialog [, alias] [, registeredName])

Returns the result returned after displaying the modal dialog specified by
dialog.

If alias is specified, the dialog is created with the name alias. Because
each open dialog must have a unique name, alias can be used in the case
where dialog is already open to give the modal dialog a unique name. Alias
must not be the name of a currently open dialog.

If registeredName is specified, the dialog is registered with the
Presentation Manager so that it will appear on the Window List with the
specified name, and the dialog is owned by the desktop. If registeredName is
not specified, the dialog is not registered with PM, and in addition the
current dialog is made the owner of the newly created dialog. The current
dialog is the dialog to which the current event belongs.

Invoking ModalFor disables all other dialogs currently open and prevents the
user from interacting with them until the modal dialog is closed. When the
modal dialog is closed, all previously disabled dialogs are re-enabled.

The event handler invoking ModalFor is suspended until an event handler for
the modal dialog executes a RETURN statement. The value, if any, specified
on the RETURN statement is then returned as the result of the ModalFor
function.

Note: Normally, event handlers exit by either falling out the bottom of the
event handler code or executing a SIGNAL RETURN statement. However, in the
case of a modal dialog it is important to remember that any event handler
that terminates display of the modal dialog must exit using a RETURN
statement (either with or without a result). Failure to do so will prevent
control from ever returning to the event handler that originally displayed
the modal dialog.

For example:

/* Get the user password and */
/* exit if it is invalid: */

130

IF ModalFor('password') <> 'SECRET' THEN EXIT

EventData

EventData([stem])

Returns the 1list of data items associated with the current event in the stem
variable specified by stem. If stem is omitted, it defaults to EVENTDATA.

The number of data items returned is specified by stem.0. Stem.1l through
stem.n contain the individual data items associated with the current event .
For a description of the data returned by a specific event for a particular
control type, refer to the Controls section.

For example:

/* Mark each container item when the cursor */

/* touches it: */

CALL EventData 'DATA'
IF data.2 = '+CURSOR' THEN CALL Select data.l, 'MARK'

Event

event = Event()

Returns the name of the current event (e.g. 'Click').

If no event has occurred yet (i.e. the Init function is being processed),
the null string is returned.

For example:

/* Display the current event: */
SAY Event() 'occurred for' Control() '('Class()')’

Control

131

name = Control()

Returns the name of the control generating the current event (e.g. 'list').

If no event has occurred yet (i.e. the Init function is being processed),
the null string is returned.

For example:

/* Display the current event: */
SAY Event() 'occurred for' Control() '('Class()')’

Class

class = Class()

Returns the class of the control generating the current event (e.g.
"LISTBOX").

If no event has occurred yet (i.e. the Init function is being processed),
the null string is returned.

For example:

/* Display the current event: */
SAY Event() 'occurred for' Control() '('Class()')’

Dialog

name = Dialog()

Returns the name of the dialog containing the control which generated the
current event (e.g. 'password').

If no event has occurred yet (i.e. the Init function is being processed),
the null string is returned.

For example:

132

/* Display the current event: */
SAY Event() 'occurred for' Control() 'in' Dialog()

Dialogs

Dialogs([stem])

Returns the names of all defined dialogs.

The names are returned in the stem variable specified by stem. If stem is
omitted, DIALOGS is used as the name of the stem variable.

Stem.0 contains the number of names returned. Stem.1l through stem .n contain
the names of each defined dialog. Note that the list includes dialogs
currently open as well as those defined but not currently open.

For example:

/* Put all dialog names into a list box: */
CALL Dialogs

DO i = 1 TO dialogs.0

CALL myDialog.list.Add dialogs.1i

END

FilePrompt

file = FilePrompt([pattern] [, title] [, ok]
[, 'Open' | 'Save'])

Prompts the user for the name of a file using the standard system file
dialog , and returns the name of the file selected as the result.

Pattern specifies the type of file the user should select, and may contain a
path or wildcard characters (i.e. '*' or '?'). If pattern is not specified,
it defaults to '*.*'.

Title specifies the text to display on the file dialog title bar. If not

specified, it defaults to 'Open file...' for a file open dialog, and 'Save
file as...' for a file save dialog.

133

Ok specifies the label for the button used to accept the current file as the
file to return as the result. If not specified, it defaults to 'Open' for a
file open dialog, and 'Save' for a file save dialog.

The fourth argument specifies whether the file dialog is for opening a file
(i.e. 'Open'), or saving a file (i.e. 'Save'). Only the first character
(i.e. '0" or 'S"') need be specified . If omitted, it defaults to being a
file open dialog.

If the user selects a file using the file dialog, the name of the file 1is
returned as the result. If the user cancels the file dialog without
selecting a file , the null string is returned as the result.

For example:

/* Prompt the user for the name of a .BMP file: */
file = FilePrompt('*.BMP', 'Enter name of bitmap file to open')

Clipboard

result = Clipboard([text])

Returns the current contents of the system clipboard.

If text is specified, it replaces the current contents of the system
clipboard.

For example:

/* Put current list selection into the clipboard: */
CALL Clipboard list.Item(list.Select())

ScreenSize

result = ScreenSize()

Returns the size of the display screen in the form: width height (e .g.
'1024 768').

For example:

134

/* Center a window on the screen: */

PARSE VALUE dialog.Position() WITH x y cx cy

PARSE VALUE ScreenSize() WITH dx dy

CALL dialog.Position (dx - cx)%2, (dy - cy)%2, cx, cy

DrRexxVersion

result = DrRexxVersion()

Returns the version of DrRexx in the form: v.vv mm/dd/yy exefile (e .g.
'2.10 09/18/93 D:\DRDIALOG\DRREXX.EXE")

For example:

/* Display the version of DrRexx: */
CALL display.Text DrRexxVersion()

135

136

DrDialog controls

DrDialog supports the following types of controls:

oDialog control

oPush button control
oCheck box control
oRadio button control
oText box control
oNotebook control
oContainer control
oList box control
oSingle-line edit control
oMulti-line edit control
oCombo box control
oSpin button control
oValue set control
oVertical scroll bar control
oHorizontal scroll bar control
oSlider control

oGroup box control
oFrame control
oRectangle control
oBillboard control
oCanvas control

oPaint control

oBitmap button control
oBag button control
oTurtle control
oBitmap control

oUser defined control
oMarquee control

Dialog control

A dialog is not actually a control, but nevertheless has a set of defined events and functions similar to a control.
For that reason, it is described here as if it were a control.

The events defined for a dialog are:

Event Description

Init The dialog is being initialized when the dialog is opened. This is always the first 'Init' event handler run when
a dialog is opened (i.e . it is run before the 'Init' event handlers defined for any controls within the dialog).

Open The dialog is completing initialization when the dialog is opened. This routine is run after all 'Init' event
handlers for the dialog have completed .

Exit The dialog has been closed

Timer A time interval set by the "Timer' function has expired

137

Move The dialog has moved
Size The dialog has changed size
Key The user has pressed a key on the keyboard.

The EventData function can retrieve the following information about the event :

EventData.1 The name of the key (e.g. 'a', 'F2 ', ' NEWLINE").

EventData.2 The class of the key (i.e.'CHAR', ' FUNCTION' or 'CONTROL)).

EventData.3 A string containing which shift keys (i.e. ALT, CTRL or SHIFT) were pressed (e.g. ", 'ALT,
'CTRLSHIFT ', 'ALTCTRLSHIFT").

EventData.4 1 if the Alt key was pressed, and 0 otherwise.

EventData.5 1 if the Ctrl key was pressed, and 0 otherwise.

EventData.6 1 if the Shift key was pressed, and 0 otherwise.

For more details about the information received for a particular key, run the TestKey.RES program in the
SAMPLE folder. This program displays all EventData fields received for each key pressed.

ShowMenu The user has requested a context-sensitive menu (by clicking the right mouse button)

Notify Another program is notifying the dialog of an event.

The EventData function can retrieve the following information about the event :

EventData.1 The name of the event
EventData.2 Data associated with the event

Note: A Notify event is generated using the Notify function. The actual data retrieved using EventData depends
on the information passed as arguments to the Notify function.

GetFocus The dialog has been given the input focus

LoseFocus The dialog has lost the input focus

Any An event not handled by a control specific or class handler for the dialog has occurred

The DrRexx window functions that can be applied to a dialog are:

Open Open (i.e. create) a new dialog

Close Close (i.e. destroy) a dialog

Owner Get/Set a dialog's owner

Frame Get the size of a dialog's frame
Timer Start/stop a dialog timer

Text Get/Set a dialog's title bar text

Style Get/Set a dialog's style mask

Font Get/Set a dialog's title bar font

Color Get/Set a dialog attribute's color

ID Get a dialog's window ID

Position Get/Set a dialog's position and size
Hide Hide a dialog

Show Show a dialog

Visible Get/Set a dialog's visibility state
Top Make a dialog the topmost window
Bottom Make a dialog the bottommost window
Enable Enable a dialog

Disable Disable a dialog

Enabled Get/Set a dialog's enabled state
Focus Give a dialog the input focus

—

138

IsDefault Make a dialog the current default control
Controls Get a list of all dialog controls
Classes Get a list of all dialog control classes

Push button control

J Creates a pushbutton control.

The events defined for a pushbutton control are:

Event Description
Click The user has clicked the pushbutton

Init The pushbutton is being initialized when the dialog is opened
Drop An object has been dropped on the pushbutton. Refer to the Drop event section for details about the
information that can be retrieved for the event using the EventData function.

The DrRexx window functions that can be applied to a push button control are :

Select Get/Set a push button control's select state

Text Get/Set a push button control's text

Style Get/Set a push button control's style mask

Font Get/Set a push button control's text font

Color Get/Set a push button control attribute's color

ID Get a push button control's window ID

Position Get/Set a push button control's position and size
Hide Hide a push button control

Show Show a push button control

Visible Get/Set a push button control's visibility state
Top Make a push button the topmost control

Bottom Make a push button the bottommost control
Enable Enable a push button control

Disable Disable a push button control

Enabled Get/Set a push button control's enabled state
Focus Give a push button control the input focus

Drag Enable/Disable dragging a push button control
Drop Enable/Disable dropping on a push button control
IsDefault Make a push button control the current default control
Controls Get a list of all dialog controls

Classes Get a list of all dialog control classes

Check box control

v
J Creates a check box control.

The events defined for a check box control are:

Event Description
Click The user has clicked the check box

139

Init The check box is being initialized when the dialog is opened
Drop An object has been dropped on the check box. Refer to the Drop event section for details about the
information that can be retrieved for the event using the EventData function.

The DrRexx window functions that can be applied to a check box control are :

Select Get/Set a check box control's select state

Text Get/Set a check box control's text

Style Get/Set a check box control's style mask

Font Get/Set a check box control's text font

Color Get/Set a check box control attribute's color

ID Get a check box control's window ID

Position Get/Set a check box control's position and size
Hide Hide a check box control

Show Show a check box control

Visible Get/Set a check box control's visibility state
Top Make a check box the topmost control

Bottom Make a check box the bottommost control
Enable Enable a check box control

Disable Disable a check box control

Enabled Get/Set a check box control's enabled state
Focus Give a check box control the input focus

Drag Enable/Disable dragging a check box control
Drop Enable/Disable dropping on a check box control
IsDefault Make a check box control the current default control
Controls Get a list of all dialog controls

Classes Get a list of all dialog control classes

—

Radio button control

Creates a radio button control.

The events defined for a radio button control are:

Event Description

Click The user has clicked the radio button

Init The radio button is being initialized when the dialog is opened

Drop An object has been dropped on the radio button. Refer to the Drop event section for details about the
information that can be retrieved for the event using the EventData function.

The DrRexx window functions that can be applied to a radio button control are :

Select Get/Set a radio button controls's select state

Text Get/Set a radio button control's text

Style Get/Set a radio button control's style mask

Font Get/Set a radio button control's text font

Color Get/Set a radio button control attribute's color

ID Get a radio button control's window ID

Position Get/Set a radio button control's position and size
Hide Hide a radio button control

—

40

Show Show a radio button control

Visible Get/Set a radio button control's visibility state
Top Make a radio button the topmost control

Bottom Make a radio button the bottommost control
Enable Enable a radio button control

Disable Disable a radio button control

Enabled Get/Set a radio button control's enabled state
Focus Give a radio button control the input focus

Drag Enable/Disable dragging a radio button control
Drop Enable/Disable dropping on a radio button control
IsDefault Make a radio button control the current default control
Controls Get a list of all dialog controls

Classes Get a list of all dialog control classes

—

Text control

Text

Creates a static text control.

The events defined for a text control are:

Event Description

Init The text control is being initialized when the dialog is opened

Drop An object has been dropped on the text control. Refer to the Drop event section for details about the
information that can be retrieved for the event using the EventData function.

The DrRexx window functions that can be applied to a text control are:

Text Get/Set a text control's text

Style Get/Set a text control's style mask

Font Get/Set a text control's text font

Color Get/Set a text control attribute's color

ID Get a text control's window ID

Position Get/Set a text control's position and size
Hide Hide a text control

Show Show a text control

Visible Get/Set a text control's visibility state

Top Make a text control the topmost control
Bottom Make a text control the bottommost control
Enable Enable a text control

Disable Disable a text control

Enabled Get/Set a text control's enabled state
Focus Give a text control the input focus

Drag Enable/Disable dragging a text control

Drop Enable/Disable dropping on a text control
IsDefault Make a text control the current default control
Controls Get a list of all dialog controls

Classes Get a list of all dialog control classes

141

Notebook control

The events defined for a notebook control are:

Creates a notebook control.

Event Description

Select A notebook page has been selected

Size The notebook control has been resized

Delete A notebook page has been deleted

Init The notebook control is being initialized when the dialog is opened

Help The notebook control has been requested to display help

Drop An object has been dropped on the notebook. Refer to the Drop event section for details about the
information that can be retrieved for the event using the _EventData function.

The DrRexx window functions that can be applied to a notebook control are :

Add Add a new notebook page

elete Delete one or all notebook pages

elect Get/Set the current notebook page

Item Get/Set a notebook page item's value

Style Get/Set a notebook control's style mask

Font Get/Set a notebook control's text font

olor Get/Set a notebook control attribute's color

ID Get a notebook control's window ID

Position Get/Set a notebook control's position and size
Hide Hide a notebook control

Show Show a notebook control

Visible Get/Set a notebook control's visibility state
Top Make a notebook the topmost control

Bottom Make a notebook the bottommost control
Enable Enable a notebook control

Disable Disable a notebook control

Enabled Get/Set a notebook control's enabled state
Focus Give a notebook control the input focus

Drag Enable/Disable dragging a notebook control
Drop Enable/Disable dropping on a notebook control
IsDefault Make a notebook control the current default control
Controls Get a list of all dialog controls

Classes Get a list of all dialog control classes

-]

2}

@l

Container control

J Creates a container control.

The events defined for a container control are:

Event Description
Changed The user has changed the value of a container item field.

142

The EventData function can retrieve the following information about the event :

EventData.1 Item that has changed.

EventData.2 Field within item that has changed. Possible values are VALUE for the item value (i.e. label), or 1
through n for detail fields 1 through n.

Enter The user has pressed Enter or double-clicked in the container.

The EventData function can retrieve the following information about the event :

EventData.1 Item that was double-clicked on (or 0 if the pointer was not over an item in the container).
Select The emphasis (select, mark or cursor) of a container item has changed .

The EventData function can retrieve the following information about the event :

EventData.1 Item whose emphasis has changed.
EventData.2 String indicating how the emphasis has changed:

+SELECT Item was selected.

-SELECT Item was unselected.

+MARK Item was marked.

-MARK Item was unmarked.

+CURSOR Item has the cursor.

-CURSOR Item has lost the cursor.

ShowMenu The user has requested a context-sensitive menu (by clicking the right mouse button) for the
container.

The EventData function can retrieve the following information about the event :

EventData.1 Item that was clicked on (or 0 if the pointer was not over an item in the container).

Init The container control is being initialized when the dialog is opened

Scroll The container control has scrolled

GetFocus The container control has been given the input focus

LoseFocus The container control has lost the input focus

Drop An object has been dropped on the container control. Refer to the Drop event section for details about the
information that can be retrieved for the event using the EventData function.

The DrRexx window functions that can be applied to a container control are :

Add Add a new container item

Delete Delete one or all container items

Select Get/Set the select state of a container item
Item Get/Set a container item field's value

View Get/Set the view of a container

SetStem Set a list of values for a container
GetStem Get a list of values for a container

Style Get/Set a container control's style mask
Font Get/Set a container control's text font

Color Get/Set a container control attribute's color
ID Get a container control's window ID

Position Get/Set a container control's position and size
Hide Hide a container control

Show Show a container control

143

Visible Get/Set a container control's visibility state
Top Make a container the topmost control

Bottom Make a container the bottommost control
Enable Enable a container control

Disable Disable a container control

Enabled Get/Set a container control's enabled state
Focus Give a container control the input focus

Drag Enable/Disable dragging a container control
Drop Enable/Disable dropping on a container control
IsDefault Make a container control the current default control
Controls Get a list of all dialog controls

Classes Get a list of all dialog control classes

—

List box control

LH
| Creates a list box control.

The events defined for a list box control are:

Event Description

Enter The user has pressed Enter or double-clicked on a list box entry

Select The user has selected a list box entry

Init The list box control is being initialized when the dialog is opened

Scroll The list box control has scrolled horizontally

GetFocus The list box control has been given the input focus

LoseFocus The list box control has lost the input focus

Drop An object has been dropped on the list box control. Refer to the Drop event section for details about the
information that can be retrieved for the event using the EventData function.

The DrRexx window functions that can be applied to a list box control are :

Add Add a new list box item

elete Delete one or all list box items

elect Get/Set the select state of a list box item
Item Get/Set a list box item's value

Style Get/Set a list box control's style mask

Font Get/Set a list box control's text font

Color Get/Set a list box control attribute's color
ID Get a list box control's window ID

Position Get/Set a list box control's position and size
Hide Hide a list box control

Show Show a list box control

Visible Get/Set a list box control's visibility state
Top Make a list box the topmost control

Bottom Make a list box the bottommost control
Enable Enable a list box control

Disable Disable a list box control

Enabled Get/Set a list box control's enabled state
Focus Give a list box control the input focus
Drag Enable/Disable dragging a list box control

-]

2

144

Drop Enable/Disable dropping on a list box control
IsDefault Make a list box control the current default control
Controls Get a list of all dialog controls

Classes Get a list of all dialog control classes

Single line edit control

Creates a single-line entry field control.

The events defined for a single line edit control are:

Event Description

Changed The edit control contents have changed

Init The edit control is being initialized when the dialog is opened
Scroll The edit control has scrolled horizontally

GetFocus The edit control has been given the input focus
LoseFocus The edit control has lost the input focus

Drop An object has been dropped on the edit control. Refer to the Drop event section for details about the
information that can be retrieved for the event using the _EventData function.

Overflow The edit control has overflowed

The DrRexx window functions that can be applied to a single line edit control are:

Select Get/Set the selection bounds of a single line edit control
Range Set the maximum length of a single line edit control
Text Get/Set a single line edit control's text content

Style Get/Set a single line edit control's style mask

Font Get/Set a single line edit control's text font

Color Get/Set a single line edit control attribute's color

Enabled Get/Set a single line edit control's enabled state

Focus Give a single line edit control the input focus

Drag Enable/Disable dragging a single line edit control

Drop Enable/Disable dropping on a single line edit control
IsDefault Make a single line edit control the current default control
Controls Get a list of all dialog controls

Classes Get a list of all dialog control classes

145

Multi-line edit control

Creates a multi-line edit control.

The events defined for a multi-line edit control are:

Event Description

Changed The edit control contents have changed

Init The edit control is being initialized when the dialog is opened

GetFocus The edit control has been given the input focus

LoseFocus The edit control has lost the input focus

Drop An object has been dropped on the edit control. Refer to the Drop event section for details about the
information that can be retrieved for the event using the _EventData function.

The DrRexx window functions that can be applied to a multi-line edit control are:

Font Get/Set a multi-line edit control's text font

Color Get/Set a multi-line edit control attribute's color

ID Get a multi-line edit control's window ID

Position Get/Set a multi-line edit control's position and size
Hide Hide a multi-line edit control

Show Show a multi-line edit control

Enabled Get/Set a multi-line edit control's enabled state

Focus Give a multi-line edit control the input focus

Drag Enable/Disable dragging a multi-line edit control

Drop Enable/Disable dropping on a multi-line edit control
IsDefault Make a multi-line edit control the current default control
Controls Get a list of all dialog controls

Classes Get a list of all dialog control classes

Combo box control

(4

Creates a prompted entry field control (i.e. combo box).

The events defined for a combo box control are:

Event Description

Enter The user has pressed Enter or double-clicked on a combo box entry
Select The user has selected a combo box entry

Init The combo box control is being initialized when the dialog is opened
Changed The entry field component contents have been changed
ScrollEntry The entry field component has scrolled horizontally

146

ScrollList The list box component has been scrolled

ShowList The list box component has been displayed (i.e. has dropped down)
Drop An object has been dropped on the combo box. Refer to the Drop event section for details about the
information that can be retrieved for the event using the EventData function.

The DrRexx window functions that can be applied to a combo box control are :

Add Add a new combo box item

Delete Delete one or all combo box items

Select Get/Set the select state of a combo box item
Item Get/Set a combo box item's value

Style Get/Set a combo box control's style mask

Font Get/Set a combo box control's text font

Color Get/Set a combo box control attribute's color

ID Get a combo box control's window ID

Position Get/Set a combo box control's position and size
Hide Hide a combo box control

Show Show a combo box control

Visible Get/Set a combo box control's visibility state
Top Make a combo box the topmost control

Bottom Make a combo box the bottommost control
Enable Enable a combo box control

Disable Disable a combo box control

Enabled Get/Set a combo box control's enabled state
Focus Give a combo box control the input focus

Drag Enable/Disable dragging a combo box control
Drop Enable/Disable dropping on a combo box control
IsDefault Make a combo box control the current default control
Controls Get a list of all dialog controls

Classes Get a list of all dialog control classes

g

—

Spin button control

ﬂ Creates a spin button control.

The events defined for a spin button control are:

Event Description

Changing The spin field contents have changed

LineUp The up arrow has been pressed or clicked

LineDown The down arrow has been pressed or clicked
GetFocus The spin button control has been given the input focus
LoseFocus The spin button control has lost the input focus

Drop An object has been dropped on the spin button. Refer to the Drop event section for details about the
information that can be retrieved for the event using the EventData function.

Done The user has released the select button or one of the arrow buttons

Init The spin button control is being initialized when the dialog is opened

The DrRexx window functions that can be applied to a spin button control are :

147

Select Get/Set the current spin button item

Range Set the range of spin button items

Style Get/Set a spin button control's style mask

Font Get/Set a spin button control's text font

Color Get/Set a spin button control attribute's color

ID Get a spin button control's window ID

Position Get/Set a spin button control's position and size
Hide Hide a spin button control

Show Show a spin button control

Visible Get/Set a spin button control's visibility state
Top Make a spin button the topmost control

Bottom Make a spin button the bottommost control
Enable Enable a spin button control

Disable Disable a spin button control

Enabled Get/Set a spin button control's enabled state
Focus Give a spin button control the input focus

Drag Enable/Disable dragging a spin button control
Drop Enable/Disable dropping on a spin button control
IsDefault Make a spin button control the current default control
Controls Get a list of all dialog controls

Classes Get a list of all dialog control classes

Value set control

EH
Creates a value set control.

The events defined for a value set control are:

Event Description

Enter The user has pressed Enter or double-clicked on a value set item

Select The user has selected a value set item

Init The value set control is being initialized when the dialog is opened

GetFocus The value set control has been given the input focus

LoseFocus The value set control has lost the input focus

Drop An object has been dropped on the value set control. Refer to the Drop event section for details about the
information that can be retrieved for the event using the EventData function.

The DrRexx window functions that can be applied to a value set control are :

Select Get/Set the currently selected value set item
Item Get/Set the value of a value set item

Style Get/Set a value set control's style mask

Font Get/Set a value set control's text font

Color Get/Set a value set control attribute's color
ID Get a value set control's window ID

Position Get/Set a value set control's position and size
Hide Hide a value set control

Show Show a value set control

Visible Get/Set a value set control's visibility state
Top Make a value set the topmost control

148

Bottom Make a value set the bottommost control

Enable Enable a value set control

Disable Disable a value set control

Enabled Get/Set a value set control's enabled state

Focus Give a value set control the input focus

Drag Enable/Disable dragging a value set control

Drop Enable/Disable dropping on a value set control
IsDefault Make a value set control the current default control
Controls Get a list of all dialog controls

Classes Get a list of all dialog control classes

Vertical scroll bar control

-

Creates a vertical scroll bar.

The events defined for a vertical scroll bar control are:

Event Description

Init The scroll bar control is being initialized when the dialog is opened
Changed The user has released the scroll bar slider

Changing The user has moved the scroll bar slider

LineUp The user has clicked on the scroll bar up arrow

LineDown The user has clicked on the scroll bar down arrow

PageUp The user has clicked on the area above the scroll bar slider
PageDown The user has clicked on the area below the scroll bar slider

Done The user has finished scrolling (but not using the scroll bar slider)
Drop An object has been dropped on the scroll bar control. Refer to the Drop event section for details about the
information that can be retrieved for the event using the EventData function.

The DrRexx window functions that can be applied to a vertical scroll bar control are:

Range Set the range for a vertical scroll bar control

Select Get/Set the current vertical scroll bar control position
Style Get/Set a vertical scroll bar control's style mask

Color Get/Set a vertical scroll bar control attribute's color

ID Get a vertical scroll bar control's window ID

Position Get/Set a vertical scroll bar control's position and size
Hide Hide a vertical scroll bar control

Show Show a vertical scroll bar control

Bottom Make a vertical scroll bar the bottommost control

Enable Enable a vertical scroll bar control

Disable Disable a vertical scroll bar control

Enabled Get/Set a vertical scroll bar control's enabled state

Focus Give a vertical scroll bar control the input focus

Drag Enable/Disable dragging a vertical scroll bar control

Drop Enable/Disable dropping on a vertical scroll bar control
IsDefault Make a vertical scroll bar control the current default control
Controls Get a list of all dialog controls

149

Classes Get a list of all dialog control classes

Horizontal scroll bar control

El

Creates a horizontal scroll bar.

The events defined for a horizontal scroll bar control are:

Event Description

Init The scroll bar control is being initialized when the dialog is opened
Changed The user has released the scroll bar slider

Changing The user has moved the scroll bar slider

LineLeft The user has clicked on the scroll bar left arrow

LineRight The user has clicked on the scroll bar right arrow

PageLeft The user has clicked on the area to the left of the scroll bar slider
PageRight The user has clicked on the area to the right of the scroll bar slider
Done The user has finished scrolling (but not using the scroll bar slider)
Drop An object has been dropped on the scroll bar control. Refer to the Drop event section for details about the
information that can be retrieved for the event using the EventData function.

The DrRexx window functions that can be applied to a horizontal scroll bar control are:

Range Set the range for a horizontal scroll bar control

Select Get/Set the current horizontal scroll bar control position
Style Get/Set a horizontal scroll bar control's style mask

Color Get/Set a horizontal scroll bar control attribute's color

ID Get a horizontal scroll bar control's window ID

Position Get/Set a horizontal scroll bar control's position and size
Hide Hide a horizontal scroll bar control

Show Show a horizontal scroll bar control

Visible Get/Set a horizontal scroll bar control's visibility state
Top Make a horizontal scroll bar the topmost control

Bottom Make a horizontal scroll bar the bottommost control
Enable Enable a horizontal scroll bar control

Disable Disable a horizontal scroll bar control

Enabled Get/Set a horizontal scroll bar control's enabled state
Focus Give a horizontal scroll bar control the input focus

Drag Enable/Disable dragging a horizontal scroll bar control
Drop Enable/Disable dropping on a horizontal scroll bar control
IsDefault Make a horizontal scroll bar control the current default control
Controls Get a list of all dialog controls

Classes Get a list of all dialog control classes

Slider control

J Creates a slider control.

The events defined for a slider control are:

150

Event Description

Init The slider control is being initialized when the dialog is opened

Changed The slider arm has been released

Changing The slider arm position has changed

GetFocus The slider control has been given the input focus

LoseFocus The slider control has lost the input focus

Drop An object has been dropped on the slider control. Refer to the Drop event section for details about the
information that can be retrieved for the event using the EventData function.

The DrRexx window functions that can be applied to a slider control are :

Item Get/Set a slider control tick label or size
Select Get/Set a slider control's slider position
Range Sets the slider control's range of tick values
Style Get/Set a slider control style mask

Font Get/Set a slider control label font

Color Get/Set a slider control attribute's color

ID Get a slider control window ID

Position Get/Set a slider control's position and size
Hide Hide a slider control

Show Show a slider control

Visible Get/Set a slider control's visibility state
Top Make a slider the topmost control

Bottom Make a slider the bottommost control
Enable Enable a slider control

Disable Disable a slider control

Enabled Get/Set a slider control's enabled state
Focus Give a slider control the input focus

Drag Enable/Disable dragging a slider control
Drop Enable/Disable dropping on a slider control
IsDefault Make a slider control the current default control
Controls Get a list of all dialog controls

Classes Get a list of all dialog control classes

—

Group box control

G
ﬂ Creates a group box control.

Note: This a DrDialog container control.

The events defined for a group box control are:

Event Description

Init The group box is being initialized when the dialog is opened

ShowMenu The user has requested a context-sensitive menu (by clicking the right mouse button)

Drop An object has been dropped on the group box. Refer to the Drop event section for details about the

information that can be retrieved for the event using the EventData function.

The DrRexx window functions that can be applied to a group box control are :

151

Text Get/Set a group box control title text

Style Get/Set a group box control style mask

Font Get/Set a group box control label font

Color Get/Set a group box control attribute's color

ID Get a group box control window ID

Position Get/Set a group box control's position and size
Hide Hide a group box control

Show Show a group box control

Visible Get/Set a group box control's visibility state
Top Make a group box the topmost control

Bottom Make a group box the bottommost control
Enable Enable a group box control

Disable Disable a group box control

Enabled Get/Set a group box control's enabled state
Focus Give a group box control the input focus

Drag Enable/Disable dragging a group box control
Drop Enable/Disable dropping on a group box control

—

IsDefault Make a group box control the current default control

Controls Get a list of all dialog controls
Classes Get a list of all dialog control classes

Frame control

J Creates a frame control.

Note: This a DrDialog container control.
The events defined for a frame control are:

Event Description

Init The frame control is being initialized when the dialog is opened

ShowMenu The user has requested a context-sensitive menu (by clicking the right mouse button)

Drop An object has been dropped on the frame control. Refer to the Drop event section for details about the
information that can be retrieved for the event using the EventData function.

The DrRexx window functions that can be applied to a frame control are:

Style Get/Set a frame control style mask

Color Get/Set a frame control attribute's color

ID Get a frame control window ID

Position Get/Set a frame control's position and size
Hide Hide a frame control

Show Show a frame control

Visible Get/Set a frame control's visibility state

Top Make a frame control the topmost control
Bottom Make a frame control the bottommost control
Drag Enable/Disable dragging a frame control

Drop Enable/Disable dropping on a frame control
IsDefault Make a frame control the current default control
Controls Get a list of all dialog controls

152

Classes Get a list of all dialog control classes

Rectangle control

J Creates a rectangle control.

Note: This a DrDialog container control.
The events defined for a rectangle control are:

Event Description

Init The rectangle control is being initialized when the dialog is opened

ShowMenu The user has requested a context-sensitive menu (by clicking the right mouse button)

Drop An object has been dropped on the rectangle control. Refer to the Drop event section for details about the
information that can be retrieved for the event using the EventData function.

The DrRexx window functions that can be applied to a rectangle control are :

Style Get/Set a rectangle control style mask

Color Get/Set a rectangle control attribute's color

ID Get a rectangle control window ID

Position Get/Set a rectangle control's position and size
Hide Hide a rectangle control

Show Show a rectangle control

Visible Get/Set a rectangle control's visibility state

Top Make a rectangle control the topmost control
Bottom Make a rectangle control the bottommost control
Drag Enable/Disable dragging a rectangle control

Drop Enable/Disable dropping on a rectangle control
IsDefault Make a rectangle control the current default control
Controls Get a list of all dialog controls

Classes Get a list of all dialog control classes

Billboard control

Creates a billboard control.

Note: This control is not a standard OS/2 control.

The events defined for a billboard control are:

Event Description

Init The billboard control is being initialized when the dialog is opened

ShowMenu The user has requested a context-sensitive menu (by clicking the right mouse button)

Drop An object has been dropped on the billboard control. Refer to the Drop event section for details about the

information that can be retrieved for the event using the EventData function.

The DrRexx window functions that can be applied to a billboard control are :

153

Style Get/Set a billboard control style mask

ID Get a billboard control window ID

Position Get/Set a billboard control's position and size
Hide Hide a billboard control

Show Show a billboard control

Visible Get/Set a billboard control's visibility state
Top Make a billboard the topmost control

Bottom Make a billboard the bottommost control
Drag Enable/Disable dragging a billboard control
Drop Enable/Disable dropping on a billboard control
IsDefault Make a billboard control the current default control
Controls Get a list of all dialog controls

Classes Get a list of all dialog control classes

Canvas control

U Creates a canvas control.

Note: This a DrDialog container control.

Note: This control is not a standard OS/2 control.
The events defined for a canvas control are:

Event Description

Init The canvas control is being initialized when the dialog is opened

ShowMenu The user has requested a context-sensitive menu (by clicking the right mouse button)

Drop An object has been dropped on the canvas control. Refer to the Drop event section for details about the
information that can be retrieved for the event using the EventData function.

The DrRexx window functions that can be applied to a canvas control are :

Style Get/Set a canvas control style mask

Font Get/Set a canvas control label font

ID Get a canvas control window ID

Position Get/Set a canvas control's position and size
Hide Hide a canvas control

Show Show a canvas control

Visible Get/Set a canvas control's visibility state

Top Make a canvas control the topmost control
Bottom Make a canvas control the bottommost control
Drag Enable/Disable dragging a canvas control

Drop Enable/Disable dropping on a canvas control
IsDefault Make a canvas control the current default control
Controls Get a list of all dialog controls

Classes Get a list of all dialog control classes

Paint control

Creates a paint control.

Note: This a DrDialog container control.
Note: This control is not a standard OS/2 control.
The events defined for a paint control are:

Event Description

Init The paint control is being initialized when the dialog is opened

ShowMenu The user has requested a context-sensitive menu (by clicking the right mouse button)

Drop An object has been dropped on the paint control. Refer to the Drop event section for details about the
information that can be retrieved for the event using the EventData function.

The DrRexx window functions that can be applied to a paint control are:

Style Get/Set a paint control style mask

ID Get a paint control window ID

Position Get/Set a paint control's position and size
Hide Hide a paint control

Show Show a paint control

Visible Get/Set a paint control's visibility state

Top Make a paint control the topmost control
Bottom Make a paint control the bottommost control
Drag Enable/Disable dragging a paint control

Drop Enable/Disable dropping on a paint control
IsDefault Make a paint control the current default control
Controls Get a list of all dialog controls

Classes Get a list of all dialog control classes

Bitmap button control

J Creates a bitmap button control.

Note: This control is not a standard OS/2 control.

The events defined for a bitmap button control are:

Event Description

Click The user has clicked the bitmap button

Init The bitmap button is being initialized when the dialog is opened

Drop An object has been dropped on the bitmap button. Refer to the Drop event section for details about the

information that can be retrieved for the event using the EventData function.

The DrRexx window functions that can be applied to a bitmap button control are:

155

Text Get/Set a bitmap button control icon

Style Get/Set a bitmap button control style mask

ID Get a bitmap button control window 1D

Position Get/Set a bitmap button control's position and size
Hide Hide a bitmap button control

Show Show a bitmap button control

Visible Get/Set a bitmap button control's visibility state

Disable Disable a bitmap button control

Enabled Get/Set a bitmap button control's enabled state

Focus Give a bitmap button control the input focus

Drag Enable/Disable dragging a bitmap button control

Drop Enable/Disable dropping on a bitmap button control
IsDefault Make a bitmap button control the current default control
Controls Get a list of all dialog controls

Classes Get a list of all dialog control classes

Bagbutton control

EIB|
J Creates a bagbutton control.

Note: This control is not a standard OS/2 control.
The events defined for a bagbutton control are:

Event Description

Click The user has clicked the bagbutton

Init The bagbutton is being initialized when the dialog is opened

Drop An object has been dropped on the bagbutton. Refer to the Drop event section for details about the
information that can be retrieved for the event using the _EventData function.

The DrRexx window functions that can be applied to a bagbutton control are :

Select Get/Set a state of the bagbutton control

Text Get/Set a bagbutton control label text

Style Get/Set a bagbutton control style mask

Font Get/Set a bagbutton control label font

ID Get a bagbutton control window ID

Position Get/Set a bagbutton control's position and size
Hide Hide a bagbutton control

Show Show a bagbutton control

Visible Get/Set a bagbutton control's visibility state
Top Make a bagbutton the topmost control

Bottom Make a bagbutton the bottommost control

Focus Give a bagbutton control the input focus

156

Drag Enable/Disable dragging a bagbutton control

Drop Enable/Disable dropping on a bagbutton control
IsDefault Make a bagbutton control the current default control
Controls Get a list of all dialog controls

Classes Get a list of all dialog control classes

Turtle control

@ Creates a turtle control.

Note: This control is not a standard OS/2 control.
The events defined for a turtle control are:

Event Description

Init The turtle control is being initialized when the dialog is opened

ShowMenu The user has requested a context-sensitive menu (by clicking the right mouse button)
MouseMove The mouse has moved over the turtle control (see note below)

Button1Down The user has pressed button 1 over the turtle control (see note below)

Button1Up The user has released button 1 (see note below)

Button1DbIClk The user has double-clicked button 1 over the turtle control (see note below)
Button2Down The user has pressed button 2 over the turtle control (see note below)

Button2Up The user has released button 2 (see note below)

Button2DbIClk The user has double-clicked button 2 over the turtle control (see note below)

Drop An object has been dropped on the turtle control. Refer to the Drop event section for details about the

information that can be retrieved for the event using the EventData function.

Note: The mouse events will only be generated if the Container style is not checked in the style dialog for the
turtle control. In addition, the EventData function can retrieve the following information about the event:

EventData.1 x position of the pointer within the turtle control
EventData.2 y position of the pointer within the turtle control

The DrRexx window functions that can be applied to a turtle control are :

Text Get/Set a turtle control's command text

Style Get/Set a turtle control's style mask

ID Get a turtle control's window ID

Position Get/Set a turtle control's position and size
Hide Hide a turtle control

Show Show a turtle control

Visible Get/Set a turtle control's visibility state

Top Make a turtle control the topmost control
Bottom Make a turtle control the bottommost control
Drag Enable/Disable dragging a turtle control

Drop Enable/Disable dropping on a turtle control
IsDefault Make a turtle control the current default control
Controls Get a list of all dialog controls

Classes Get a list of all dialog control classes

157

Bitmap control

E

The events defined for a bitmap control are:

Creates a bitmap control.

Event Description

Init The bitmap control is being initialized when the dialog is opened

Drop An object has been dropped on the bitmap control. Refer to the Drop event section for details about the
information that can be retrieved for the event using the EventData function.

The DrRexx window functions that can be applied to a bitmap control are :

Style Get/Set a bitmap control style mask

Color Get/Set a bitmap control attribute's color

ID Get a bitmap control window ID

Position Get/Set a bitmap control's position and size
Hide Hide a bitmap control

Show Show a bitmap control

Visible Get/Set a bitmap control's visibility state

Top Make a bitmap control the topmost control
Bottom Make a bitmap control the bottommost control
Enable Enable a bitmap control

Disable Disable a bitmap control

Enabled Get/Set a bitmap control's enabled state
Focus Give a bitmap control the input focus

Drag Enable/Disable dragging a bitmap control

Drop Enable/Disable dropping on a bitmap control
IsDefault Make a bitmap control the current default control
Controls Get a list of all dialog controls

Classes Get a list of all dialog control classes

User defined control

Creates a user defined control.

Note: The actual window class of the control can be specified by editing the control's style.

The events defined for a user defined control are:

Event Description

Init The user defined control is being initialized when the dialog is opened

Drop An object has been dropped on the user defined control. Refer to the Drop event section for details about
the information that can be retrieved for the event using the EventData function.

The DrRexx window functions that can be applied to a user defined control are :

Text Get/Set a user defined control's text
Style Get/Set a user defined control style mask

158

Color Get/Set a user defined control attribute's color

ID Get a user defined control window ID

Position Get/Set a user defined control's position and size
Hide Hide a user defined control

Show Show a user defined control

Visible Get/Set a user defined control's visibility state

Enabled Get/Set a user defined control's enabled state

Focus Give a user defined control the input focus

Drag Enable/Disable dragging a user defined control

Drop Enable/Disable dropping on a user defined control
IsDefault Make a user defined control the current default control
Controls Get a list of all dialog controls

Classes Get a list of all dialog control classes

Marquee control

Ml

&=="4 Creates a marquee control.
Note: This control is not a standard OS/2 control.

The events defined for a marquee control are:

Event Description

Init The marquee control is being initialized when the dialog is opened

ShowMenu The user has requested a context-sensitive menu (by clicking the right mouse button)

Drop An object has been dropped on the marquee control. Refer to the Drop event section for details about the
information that can be retrieved for the event using the EventData function.

The DrRexx window functions that can be applied to a marquee control are :

Text Get/Set a marquee control's text

Style Get/Set a marquee control style mask

ID Get a marquee control window ID

Position Get/Set a marquee control's position and size
Hide Hide a marquee control

Show Show a marquee control

Visible Get/Set a marquee control's visibility state

Top Make a marquee control the topmost control
Bottom Make a marquee control the bottommost control
Drag Enable/Disable dragging a marquee control

Drop Enable/Disable dropping on a marquee control
IsDefault Make a marquee control the current default control
Controls Get a list of all dialog controls

Classes Get a list of all dialog control classes

159

Drop event

When a source object is dropped on a drop enabled DrRexx control, it generates one or more Drop events for the
dropped on, or target, control. A Rexx event or class handler can be written to handle these events and take
appropriate action. In order to determine what the appropriate action is, the EventData function can be used to
retrieve the following information about the source object :

EventData.1 The data supplied by the source object.

EventData.2 The source object container.

EventData.3 The type of the source object data.

EventData.4 The format of the source object data (i.e. STRING or FILE).

EventData.5 The operation to be performed on the source object data (i.e . MOVE, COPY or LINK).
EventData.6 The source object ID.

EventData.7 The target object ID.

EventData.8 The location where the source object was dropped.

For some of these items, the form the value takes depends on the type of the source object as follows:

EventData.1 If the format of the source object is STRING, the data can be any valid REXX string. If the format is
FILE, the data should be the fully qualified name of an OS/2 file (e.g. C:\OS2\BITMAP\OS2LOGO. BMP).

EventData.2 The source object container depends both on the format and source of the dropped object. If the
format is FILE, then the container is the path name of the OS/2 file being dropped (e.g. C:\OS2\BITMAP\). If
the format is STRING and the originator is another DrRexx control (not necessarily in the same application), the
container is a string of the form: dialog .control=class, where dialog is the name of the DrRexx dialog containing
the control that was dragged, control is the name of the control, and class is the class of the control (e.g.
orders.customers=CONTAINER). In the case of a non -DrRexx source object of format STRING, the form of
the container field is not specified.

EventData.3 The type of the source object data is the intersection of the source and target types (i.e. source types
not understood by the target are not included in the value). If the target accepts ANY type, then all of the source
object types are included in the value.

EventData.4 The format of the source object data will either be STRING or FILE.

EventData.5 The operation to be performed on the source object data will either be MOVE, COPY or LINK.
EventData.6 The source object ID gives more information about which part of the source object was dragged.
Since most DrRexx controls only have a single part, this value is normally just the source control ID (e.g. 101).
The exceptions are:

Container The source ID is the container item that was dragged.

Value set The source ID is the value set item that was dragged. This is a single number of the form: row + 65536
* column.

List box The source ID is the number of the list box item that was dragged .

Note: In the case where the source object is not a DrRexx control, the meaning of the source ID is not defined,
other than that it is a number.

160

EventData.7 The target object ID gives more information about which part of the target control the source object
was dropped on. Since most controls only have a single part, this value is normally just the target control ID (e.g .
101). The exceptions are:

Container The target ID is the container item the source object was dropped on (0 if the object was dropped on
empty space within the container).

Value set The target ID is the value set item the source object was dropped on. This is a single number of the
form: row + 65536 * column.

EventData.8 The location where the source object was dropped is returned as a string of the form: x1 y1 x2 y2.
X1 is the horizontal, and y1 is the vertical distance of the pointer from the lower left hand corner of the dialog the
target control is contained in at the time the item was dropped. X2 is the horizontal, and y2 is the vertical distance
of the lower left hand corner of the drag image (i.e. icon) from the lower left hand corner of the dialog the target
control is contained in.

Note: When a source object is dropped on a DrRexx control, it may generate more than one Drop event. For
example, selecting several items in a drag enabled DrRexx list box and then dropping it onto a drop enabled
control will generate one Drop event for each selected item in the list box. This is indicated visually during the
drag operation by the appearance of several bitmaps (up to a maximum of four) staggered behind the pointer,
instead of just a single bitmap.

161

162

DrDialog specific controls

Most of the controls available in the controls window palette are standard OS /2 PM controls (e.g. pushbuttons,
list boxes, containers, etc.). You should refer to the OS/2 Presentation Manager Programming Guide and the
0S/2 Presentation Manager Programming Reference Volume III for detailed information about the purpose and
programming interface for these controls.

However, there are also a number of controls that are unique to DrDialog :

oBillboard controls
oCanvas controls
oPaint controls

oBitmap button controls
oBagbutton controls
oTurtle controls
oMarquee controls

If you use any of these controls in your dialogs, you will also need to have DRDIALOG.DLL in the LIBPATH
when your application runs.

In addition, prior to loading any dialogs containing DrDialog specific controls, your program must call
UseDrDialog to initialize the DrDialog control window classes. This function has no arguments, and returns 1 if
the DrDialog control window classes were successfully initialized, and 0 otherwise. You must link with the
DRDIALOG.LIB file supplied with DrDialog in order to include UseDrDialog in your program.

The DRDIALOG.H and DRDIALOG.OH files contain the function prototype for UseDrDialog for the C (C++)
and Oberon languages respectively.

These files also contain definitions for the various style bits supported by the DrDialog specific controls. You
may need to use these if your application changes the style of any DrDialog specific controls at run-time.

Billboard controls

A billboard control is a bitmap used to dress up an otherwise boring dialog . It has a simple interface that requires
no application programming, and a selection of styles that supports a wide variety of presentation techniques.

The bitmap displayed in a billboard control is specified using the control 's window text. The format of the text is
either: [DLLname:# resourceld (e.g. ' BITMAP:#23"), or filename.BMP (e.g. C
NOS2\BITMAP\OS2LOGO.BMP).

In the first form, the optional DLLname specifies the name of the DLL the bitmap can be found in. If omitted, the
bitmap is assumed to be part of the application's EXE file. The resourceld specifies the resource number of the

bitmap within the DLL or EXE file.

In the second form, the bitmap is assumed to be stored in a standard .BMP file (e.g. a .BMP file created by
IconEdit, the OS/2 icon editor). Note that the last four characters of the file name must be .BMP.

163

The window text string can be specified using the text window or, for bitmaps stored in a DLL, using the
billboard control's style dialog, displayed whenever button 2 is pressed while the pointer is over a billboard
control.

The billboard style dialog has a text entry field for specifying the name of the DLL to use (the default DLL is the
BITMAP DLL supplied with DrDialog). Clicking the Load button opens the DLL and displays all of its bitmap
resources in the array of billboard controls located below it. The scroll bar located next to the billboard controls
can be used to scroll through the DLL's bitmap resources. Clicking any of the billboard controls in the style dialog
will cause the associated billboard control in the edit dialog to display the same bitmap. The billboard control's
window text will also be updated accordingly.

The style dialog also allows various display characteristics of a billboard control to be set:

Container: If selected, the billboard is a DrDialog container. It will appear below all non-container controls and
can contain other controls (including other container controls). If not selected, the billboard control is a normal,
non-container control.

Mode:

Scale The bitmap is scaled to completely fill the control.

Replicate The bitmap is displayed at its normal size, but is replicated (starting from the lower left corner) until
the control is completely filled.

Center A single, normal sized copy of the bitmap is displayed in the center of the control.

Speed:

Stopped The bitmap is displayed in a stationary position.

Slow The bitmap (or replicated copies of the bitmap) are scrolled slowly.
Medium The bitmap is scrolled twice as fast as the slow speed.

Fast The bitmap is scrolled at its fastest speed.

Direction:

Left The bitmap scrolls toward the left of the control.
Right The bitmap scrolls toward the right of the control.
Top The bitmap scrolls toward the top of the control.

Bottom The bitmap scrolls toward the bottom of the control.

In addition, the standard PM control styles (Visible, Disabled, Tab stop, and Group) can also be specified in the
billboard style dialog.

Canvas controls

A canvas control is similar to a group box. It is a DrDialog container control used to visually group other
controls. It has a wide variety of visual styles which can be specified via its style bits. It also has an optional text
label which can be modified using the text window.

The visual appearance of a canvas control is specified using the canvas style dialog, displayed when button 2 is
clicked while the pointer is in a canvas control . With the canvas style dialog you can select:

164

Canvas styles/border width:

Indented The edge of the control has an indented look.

Raised The edge of the control has a raised look.

Ridged The edge of the control has either a ridged or grooved appearance, depending on whether Raised or
Indented is selected. This effect may be turned on or off.

Thickness The thickness of the control edge can be selected using the spin button. You can turn off the edge
entirely by selecting a thickness of 0.

Horizontal text alignment:

Left The text label is left aligned in the control.

Center The text label is horizontally centered in the control.

Right The text label is right aligned in the control.

Vertical text alignment:

Top The text label is top aligned in the control.

Center The text label is vertically centered in the control.

Bottom The text label is bottom aligned in the control.

Text styles:

Separator A separator will be drawn to separate the text label from the rest of the control. This effect can be
turned on or off. If the text label is not specified, or is both horizontally and vertically centered, the separator is

not drawn, even if requested.

Canvas patterns: Any of 16 different background patterns for the control can be specified by clicking on the
desired pattern.

In addition, the standard PM control styles (Visible, Disabled, Tab stop, and Group) can also be specified in the
canvas style dialog.

Paint controls

A paint control provides background color for a dialog. It is a DrDialog _container control that mixes two colors,
a paint color and a mix color, in various proportions to achieve a desired shade.

The paint control's color is specified using the paint control's style dialog, displayed when button 2 of the pointer

is clicked in a paint control . Click on the desired paint and mix colors, and use the mix value spin button to adjust
their relative proportions.

Bitmap button controls

A bitmap button control is a push button that uses a bitmap instead of text to describe its function. The bitmap
displayed is specified by the control 's window text. The format of the text is either: [DLLname:]# resourceld
(e.g. BITMAP:#23"), or filename.BMP (e.g. C N\OS2\BITMAP\OS2LOGO.BMP).

165

In the first form, the optional DLLname specifies the name of the DLL the bitmap can be found in. If omitted, the
bitmap is assumed to be part of the application's EXE file. The resourceld specifies the resource number of the
bitmap within the DLL or EXE file.

In the second form, the bitmap is assumed to be stored in a standard .BMP file (e.g. a .BMP file created by
IconEdit, the OS/2 icon editor). Note that the last four characters of the file name must be .BMP.

The window text string can be specified using the text window or, for bitmaps stored in a DLL, using the bitmap
button control's style dialog, displayed whenever button 2 is pressed while the pointer is over a bitmap button
control.

The bitmap button style dialog has a text entry field for specifying the name of the DLL to use (the default DLL is
the BITMAP DLL supplied with DrDialog). Clicking the Load button opens the DLL and displays all of its
bitmap resources in the array of bitmap button controls located below it. The scroll bar located next to the bitmap
buttons can be used to scroll through the DLL's bitmap resources . Clicking any of the bitmap button in the style
dialog will cause the associated bitmap button control in the edit dialog to display the same bitmap. The bitmap
button control's window text will also be updated accordingly.

In addition, the standard PM control styles (Visible, Disabled, Tab stop, and Group) can also be specified in the
bitmap button style dialog.

Bagbutton controls

A bagbutton button control is a push button that allows other controls to be stacked on top of it as if they were
held in a bag. The stacked controls behave visually as if they were part of the bagbutton control. That is, when the
button is clicked, the controls held in the bagbutton will shift as part of the 3-D effect of the button press. The
result is a composite button that behaves as if it were a single , seamless control.

The bagbutton is also a DrDialog container control. Any controls placed on top of it will move with it when the
bagbutton is moved.

The normal appearance of a bagbutton includes:

oOptional text
oOptional LED. The LED will light whenever the bagbutton is in the checked/ pressed state.

The text string can be specified using the text window.

The visual appearance and behavior of a bagbutton control is specified using the bagbutton style dialog, displayed
when button 2 is clicked while the pointer is in a bagbutton control. With the bagbutton style dialog you can
select:

Button style:

Pushbutton The bagbutton behaves like a pushbutton.

Clicker The bagbutton behaves like a clicker. A clicker is a button that sends its owner window a continuous
stream of WM_COMMAND messages while the bagbutton is pressed.

Check box The bagbutton behaves like a check box.

Radio button The bag button behaves like a radio button.

166

Clicker speed (i.e. rate at which WM_COMMAND messages are generated if the bagbutton has the clicker
stlye):

oSlow
oMedium
oFast
oFastest

LED style:

oNone (i.e. no LED)
oRound
oRectangular

LED color:

oRed
oGreen
oYellow
oCyan

Horizontal text/LED alignment:

Left The text label and/or LED is left aligned in the control.
Center The text label and/or LED is horizontally centered in the control.
Right The text label and/or LED is right aligned in the control.

Vertical text/LED alignment:

Top The text label and/or LED is top aligned in the control.
Center The text label and/or LED is vertically centered in the control.
Bottom The text label and/or LED is bottom aligned in the control.

Sizes:

Border width Thickness of the 3-D border around the bagbutton (1 to 4).
Window shift Amount by which other controls within the bagbutton are shifted when the button is pressed and
released (0 to 3).

Note: Only controls which are fransparent to the mouse should be placed on top of a bagbutton control. If the
control is not pointer transparent, it will interefere with the correct operation of the bagbutton. Valid transparent
controls are:

oBillboard controls
oTurtle controls
oMarguee controls
oCanvas controls
oPaint controls

Below are several examples of composite bagbutton controls along with a description of each button:

167

=AT] L E)
=

Help Hext =

1 2 3 4

1.Bagbutton control and Marquee control
2.Bagbutton control with text and Billboard control
3.Bagbutton control with text and Turtle control
4.Bagbutton control with LED and Billboard control

Turtle controls

A turtle control is named after the turtle made famous by the Logo language . In Logo, a robotic turtle with a pen
was controlled by means of simple commands to draw figures on a piece of paper.

DrDialog turtle controls behave in much the same manner. The simple commands understood by a turtle control
are specified using its window text.

The window text can be specified using the text window or, more conveniently, using the turtle control's style
dialog displayed when button 2 is pressed while the pointer is over a turtle control.

The turtle style dialog has a text entry field for specifying the name of a text file containing one or more turtle
control strings, one per line (the default file name is for the DRDIALOG.TUR file supplied with DrDialog).
Clicking the Load button opens the file and displays each control string as it would appear in a turtle control in
the array of turtle controls located below it. The scroll bar located next to the turtle controls can be used to scroll
through the file's turtle control strings. Clicking any of the turtle controls in the style dialog will cause the
associated turtle control in the edit dialog to display the same turtle control string. The turtle control's window text
will also be updated accordingly.

The turtle style dialog also allows various display characteristics of a turtle control to be set:

Container: If selected, the turtle control is a DrDialog container. It will appear below all non-container controls
and can contain other controls (including other container controls). If not selected, the turtle control is a normal,
non-container control.

Drawing color: The color the turtle control draws with can be specified by clicking on the desired color.

Background color: The background color for the turtle control can be specified by clicking on the desired color.

In addition, the standard PM control styles (Visible, Disabled, Tab stop, and Group) can also be specified in the
turtle style dialog.

Turtle control commands

168

A turtle control interprets a simple command language. Each command consists of a single letter followed (in
most cases) by an optional integer modifier . For example, the string '<urdl>' draws a filled box by giving the
turtle the following commands:

< Put the drawing pen down on the paper (i.e. screen)
u Move up

r Move right

d Move down

1 Move left

> Pick the drawing pen up

The following commands are understand by a turtle control:

f[n] Set the fractional movement divisor to n. The initial value and default is 100 (i.e. fractions are percentages).
z[n] Set the default fractional movement size to n. The initial value is 10, and the default value is no change. A
fractional movement is a movement expressed as a fraction of the total control width or height (e.g. movement =
(z * width) / f).

Z[n] Set the default absolute movement size to n. The initial value is 1 and the default value is no change. An
absolute movement is a movement expressed in pels.

u[n] Move the pen up n fractional units. The default value is the current value of z.

d[n] Move the pen down n fractional units. The default value is the current value of z.

1 Move the pen left n fractional units. The default value is the current value of z.

r Move the pen right n fractional units. The default value is the current value of z.

U Move the pen up n absolute units. The default value is the current value of Z.

D Move the pen down n absolute units. The default value is the current value of Z.

L Move the pen left n absolute units. The default value is the current value of Z.

R Move the pen right n absolute units. The default value is the current value of Z.

x[m[,n]] Move the pen to the position whose fractional x coordinate is given by m, and whose fractional y
coordinate is given by n. The default value for m is 0. If n is not specified, the current y coordinate of the pen is
not changed.

y[m[,n]] Move the pen to the position whose fractional y coordinate is given by m, and whose fractional x
coordinate is given by n. The default value for m is 0. If n is not specified, the current x coordinate of the pen is
not changed.

X[m[,n]] Move the pen to the position whose absolute x coordinate is given by m, and whose absolute y
coordinate is given by n. The default value for m is O . If n is not specified, the current y coordinate of the pen is
not changed.

Y[m[,n]] Move the pen to the position whose absolute y coordinate is given by m, and whose absolute x
coordinate is given by n. The default value for m is O . If n is not specified, the current x coordinate of the pen is
not changed.

c[n] Set the drawing color of the turtle to n. This should be a number in the range from O to 15. The initial and
default values are 7 (black).

b[n] Set the background color of the turtle to n. This should be a number in the range from 0 to 15. The initial and
default values are 15 (gray).

pln] Set the fill pattern for the turtle to n. This should be a number in the range from 0 to 19. The initial and
default values are O (solid fill).

< Put the drawing pen down (i.e. on the screen). Figures can only be drawn when the pen is down. The pen is
initially up.

> Pick the drawing pen up (i.e. off the screen). No figures are drawn when the pen is up. The pen is initially up.
h[n] Set the current heading to n degrees. This should be a number in the range from 0 to 360. The initial and
default values are O (i.e. up).

a[n] Set the default heading increment to n degrees. The initial value is 90 , and the default is no change.

t[n] Increase the current heading by n degrees counter-clockwise. The default value is the current value of a.

169

T[n] Increase the current heading by n degrees clockwise. The default value is the current value of a.

m[n] Move the pen n fractional units in the current heading. The default is the current value of z.

M([n] Move the pen n absolute units in the current heading. The default is the current value of Z.

"..." Display the text between the two quote marks at the current pen position using the current drawing color. The
starting pen position is at the lower left hand corner of the text displayed.

"..." Display the text between the two quote marks at the current pen position using the current drawing color. The
starting pen position is at the lower left hand corner of the text displayed.

[...]n Do the commands in square brackets n times. The default value of nis 1.

{...}c Assign the commands in curly braces the name ¢ (a single character, which must be specified).

=c Interpret the series of commands previously given the name ¢ (a single character, which must be specified).
(...) Evaluate the series of pen movement commands enclosed in parentheses without actually moving the pen.
When the closing parenthesis in encountered, move the pen to the final position computed.

|...I The characters between the two vertical bars are the fully qualified name of an OS/2 PM metafile.
Alternatively, if no characters occur between the vertical bars, the metafile is assumed to be stored in the system
clipboard .

If this command is used it must be the very first (or only) command in the turtle control string. If no other
commands follow it, then the metafile specified between the vertical bars is displayed in the turtle control. If other
turtle commands do follow the second vertical bar, then they are used to draw the contents of the turtle control
and the result is stored in the specified metafile (i.e. an OS/2 file or the system clipboard).

Note: Characters, including blanks, which are not recognized as valid turtle commands are ignored.

For some examples of turtle command strings, refer to the contents of the DRDIALOG.TUR file that comes with
DrDialog.

Marquee controls

A marquee control is similar to a text control, but uses vector rather than bitmap fonts. As a result, any size text
can be displayed simply by sizing the marquee control appropriately. The text for a marquee control can be
entered using the text window.

The visual appearance of a marquee control is controlled by its style bits and can be specified using the marquee
style dialog displayed when button 2 is clicked while the pointer is in a marquee control. With the marquee style
dialog you can select:

Font:

oHelvetica
oTimes Roman
oCourier
oSymbol Set

Style:
Bold Displays the text using a bold version of the selected font.
Italic Displays the text using an ifalic version of the selected font.

Embossed Displays the text so that it appears to be embossed. If not specified, the text will have an engraved
appearance. The embossed/engraved effect only applies if the text and background color are the same.

170

Speed:

Stopped The text is displayed stationary. The height of the control determines the scaling of the text in both the
horizontal and vertical directions.

Slow The text is slowly scrolled from one side of the control to the other.

Medium The text is scrolled somewhat faster than the slow rate.

Fast The text is scrolled at its fastest rate.

Direction:

Right->Left The text is scrolled from right to left. This has no effect if stopped is specified.
Left->Right The text is scrolled from left to right. This has no effect if stopped is specified.

Text color: The text color can be specified by clicking on the desired color.
Background color: The background color for the control can be specified by clicking on the desired color.

In addition, the standard PM control styles (Visible, Disabled, Tab stop, and Group) can also be specified in t
marquee style dialog.

Some examples of marquee controls are as follows:
Helvetica Times Roman courier
Bold Bold Bold
[talic Italic Ttalic
Both Both Both

== oo prm ol Tl o e e
_}rj@ffllffiﬁ fﬁ:"e‘ﬁf’ﬁ]’ﬁﬁ T S
= I STt Tt " S r = - -
Emuossad Bmboiied Btz

he

171

172

DrsAide

DrsAide is an extension to DrDialog that allows new tools to be written using DrRexx and seamlessly integrated
into the DrDialog programming environment.

This section describes:

othe extension mechanism to DrDialog provided by DrsAide

othe default DrsAide tool provided with DrDialog

oa suite of tools provided with DrDialog and written in DrRexx using the DrsAide interface
ohow to go about writing your own DrsAide tools

The DrsAide extension mechanism

There are two components to the DrsAide extension mechanism:

oThe DrsAide tool
oThe DrDialog function

The DrsAide tool

The DrDialog Tools window and the Tools submenu of the DrDialog menu bar and pop-up menu contain the

L
e

[ca i s’}
[
frreersenred

olf the DrsAide tool is not running, DrDialog starts it.
olf the DrsAide tool is running, DrDialog brings all of its associated windows to the foreground.

button. Clicking this button causes one of the following two actions to occur:

DrDialog starts the DrsAide tool running by executing the following command :

drdialogPath\DRREXX drdialogPath\DRSAIDE.RES -HdrdialogHandle

where drdialogPath is the fully qualified path from which the DrDialog . EXE
file was invoked, and -HdrdialogHandle is the handle a DrRexx application
needs to start a conversation with DrDialog using the Init subcommand of the
DrDialog function.

For example, the following command might be used to invoke the DrsAide tool

D:\DRDIALOG\DRREXX D:\DRDIALOG\DRSAIDE.RES -H1482695048

173

Note: The DrsAide.RES file must be in the same directory as the DrDialog.EXE
file.

From the above, it can be seen that the DrsAide tool must be a DrRexx
application, and must be available in .RES file format (i.e. not .EXE file
format). Other than that, the DrsAide.RES file can be any valid DrRexx
application. If desired, it can use the -H command line argument passed to
it to establish a conversation with DrDialog using the DrDialog function.
However, it is not required to do so.

DrDialog tracks whether DrsAide.RES is running or not. If DrsAide .RES
terminates, DrDialog takes note of the fact and will automatically start a

L
Bl

new copy the next time the ===l button is clicked.

DrDialog also treats the execution status of DrsAide.RES as a user
preference item, and will automatically start DrsAide.RES when DrDialog is
invoked if DrsAide.RES was running when DrDialog last terminated.

LWL
"

If DrsAide.RES is already running when the button is clicked, DrDialog
will simply bring all dialogs registered with DrDialog with the application

name 'DrsAide' to the foreground (a dialog is registered with DrDialog using
the Owner subcommand of the DrDialog function).

Note: It is normally not necessary to write the DrsAide.RES tool yourself.
DrDialog is distributed with an extensible DrsAide.RES tool which will
satisfy most requirements. This section simply documents the mechanism used
in case it ever becomes necessary for you to write or modify the DrsAide.RES
tool.

The default DrsAide tool

DrDialog is distributed with a default DrsAide.RES tool already defined . This tool is written in such a way as to
allow new tools to be easily added to the system.

The default DrsAide tool can actually be invoked in one of three ways:

gy
"

o0
[
oFrom DrDialog, by clicking on the m button.
oFrom the Workplace Shell, by dropping a new or existing tool's .RES file icon onto the DrsAide icon.

oFrom the Workplace Shell, by double-clicking the DrsAide icon.

Invoking the default DrsAide tool from DrDialog

174

When invoked from DrDialog, DrsAide.RES displays a tool bar where each icon button represents a tool that can
be invoked via DrsAide. The tool bar window can be moved to any desired screen position, and will remember its
location each time the tool bar window is closed. This saved location will be used to position the icon bar the next
time DrsAide is invoked from DrDialog.

The position of the tool bar icon buttons can also be changed by dragging an icon button from its current location
and dropping it on its new location. The new arrangement will be saved when the tool bar window is closed, and
will be used to define the order of the icon buttons the next time DrsAide is invoked from DrDialog.

Clicking an icon button in the DrsAide tool bar will do one of two things, depending upon the status of the
corresponding tool:

olf the tool is not running, DrsAide starts it.
olf the tool is running, DrsAide brings all of its associated windows to the foreground.

Note that this is very similar to the actions taken by DrDialog with regard to the DrsAide tool.
If the tool is not running, DrsAide starts it by executing a command of the form:

'START drdialogPath\DRREXX tool.RES -HdrdialogHandle iniFile'

where:

odrdialogPath is the fully qualified path from which the DrDialog .EXE file
was invoked

otool.RES is the name of the DrRexx tool to be executed

o-HdrdialogHandle is the handle a DrRexx application needs to start a
conversation with DrDialog using the Init subcommand of the DrDialog
function.

oiniFile is the fully qualified name of the DrsAide.INI file that the tool
can use to save or restore information.

For example, the following command might be used to invoke the CLOCK.RES
sample program from DrsAide:

START D:\DRDIALOG\DRREXX D:\DRDIALOG\SAMPLE\CLOCK.RES
-H1482695048 D:\DRDIALOG\DRSAIDE.INI

Note: The tool.RES file can be in any directory (unlike the DrsAide .RES
file, which must be in the same directory as the DrDialog.EXE file).

From the above, it can be seen that, like DrsAide, any tool invoked from
DrsAide must be a DrRexx application, and must be available in .RES file
format (i .e. not .EXE file format). Other than that, a tool.RES file can be
any valid DrRexx application. If desired, it can use the -H command line
argument passed to it to establish a conversation with DrDialog using the
DrDialog function. However, it is not required to do so. It can also use the
iniFile passed to it to store long term tool specific information (e.g. the
saved position of the tool window). More information on this is available in

175

the section on writing a DrsAide tool.RES file.

If the tool is already running when the tool's icon button is clicked,
DrsAide will simply bring all dialogs registered with DrDialog using the
tool's fully qualified .RES file name to the foreground (a dialog is
registered with DrDialog using the Owner subcommand of the DrDialog
function).

Note: Unlike DrDialog, DrsAide does not actually track the execution state
of each tool it starts. DrsAide only tracks the dialogs registered with
DrDialog. If a tool registers one or more dialogs with DrDialog, DrsAide
will bring those dialogs to the foreground when the tool's icon button is
clicked. If it has not registered any dialogs, DrsAide will simply launch
another copy of the tool, even if the previous copy is still running. It is
the tool writer's responsibility to register any necessary dialogs with
DrDialog if they do not want multiple copies of the tool to be running
simultaneously.

Invoking the default DrsAide tool from the Workplace Shell

Invoking DrsAide from the Workplace Shell allows you to add or delete tools from the tool bar that DrsAide
displays when invoked from within DrDialog.

To add or delete a single tool, simply drag its .RES file icon and drop it on the DrsAide icon in the DrDialog
folder. If the tool is not already known to DrsAide, it will add the tool to the tool bar. If the tool is already in the
tool bar, DrsAide will prompt to see if you wish to delete the tool or cancel the request. If you specify delete, the
tool will be removed from the DrsAide tool bar. If you specify cancel, no action will be taken.

When either adding or deleting a tool, no change to the DrsAide tool bar will occur until the next time DrsAide is
invoked from within DrDialog.

In order to display an appropriate bitmap button in the DrsAide tool bar, each tool added to DrsAide must have a
corresponding .BMP file. The .BMP file must reside in the same directory and have the same name (with a .BMP
extension) as the .RES file it corresponds to. If no .BMP file with this name is found, DrsAide will not add the
specified .RES file to its tool bar. The size of the bitmap contained in the .BMP file should also be 40 x 40 in
order to be consistent with other DrsAide tools.

You can also directly edit the set of installed DrsAide tools by double- clicking the DrsAide icon in the DrDialog
folder. A dialog containing a list of tools currently installed will appear. You can then:

oDelete a tool by selecting its entry and clicking the Delete button.

0Add a tool by typing its .RES file name into the appropriate entry field and clicking the Add button. If the
specified .RES file exists and is not already installed, it will be added as a new DrsAide tool immediately after the
currently selected entry in the list of installed tools. If the .BMP file entry field is not empty, the specified file will
be used as the name of the .BMP file to use for the tool's icon button. If it is empty, the .RES file 's name with a
.BMP extension will be used as the name of the .BMP file .

oChange the name of the .BMP file to use for a tool's icon button by clicking on its .BMP file name while holding
the Alt key. This will allow you to edit the name of the .BMP file. When you are done editing, click on any other
field to indicate you are done.

176

You can also copy a currently installed tool's information into the entry fields by double-clicking its entry in the
list. This is useful when you wish to move a tool from one location in the DrsAide tool bar to another. Simply
double-click the entry to move (thus copying its information into the entry fields), then click the Delete button.
Then select the list entry preceding the new location you wish to use and click the Add button.

When you are finished making changes, click the Save button to permanently update the installed tool's
information. No permanent changes are made until the Save button is clicked.

DrDialog function

result = DrDialog(subcommand [, arguments])

The DrDialog function is the mechanism by which DrDialog tools written using
DrRexx communicate with DrDialog. The subcommand argument specifies which of
27 different subcommands are to be executed by DrDialog in response to the
DrDialog function request. The additional arguments, if any, following the
subcommand depend on the particular subcommand specified.

The available subcommands are as follows:

Init Initialize conversation with DrDialog
Owner Set window owner

FOCus Give focus to .RES files windows
GEtres Get current .RES contents

SETres Set current .RES contents

FIlename Get current .RES file name
Modified Get/Set modified flag

DIALOGS Get all dialogs

CONTROLS Get all controls for current dialog
EVENTS Get events for a control type
GLOBALS Get global procedure names

GLOBAL Get/Set global procedure code
NEWDialog Create new dialog

NEWControl Create new control

DROPDialog Delete dialog

DROPControl Delete control

DIALOG Get/Select current dialog

CONTROL Get/Select current control

SElLect Get/Select current selected controls
NAme Get/Set control name

Text Get/Set control text

Hint Get/Set control hint text

Position Get/Set control size/position
STyle Get/Set control style

FONt Get/Set control font

COlLor Get/Set control color

EVENT Get/Set control event handler

CLass Get/Set control class handler

177

Note: In the above list of subcommands, capital letters indicate characters
required to identify the subcommand, while lower case letters indicate
optional characters that can be specified if desired.

DrDialog 'Init' subcommand

CALL DrDialog 'Init', handle

Initializes a conversation with the DrDialog session identified by handle .
Handle must be the string of characters starting with '-H' that is passed as
the first command line argument when a DrsAide tool is invoked.

This DrDialog subcommand must be the first one issued by a tool wishing to
interact with DrDialog. Failure to do so, or specifying an invalid handle,
will result in all subsequent DrDialog function calls generating an error.

This function need only be issued once. All subsequent DrDialog functions
will automatically direct their requests to the DrDialog session specified
by handle . If a single tool needs to talk to more than one DrDialog
session, an Init subcommand must be issued every time a different DrDialog
session is to be addressed.

DrDialog 'Owner’' subcommand

CALL DrDialog 'Owner', dialog [, toolName]

Specifies that DrDialog is to own the tool dialog specified by dialog, and
that the dialog is to be registered as belonging to the tool specified by
toolName . If toolName is not specified, it defaults to the fully qualified
name of the tool's .RES file.

Owning a dialog allows DrDialog to display the dialog as part of its
collection of tool windows and prevents the dialog from disappearing behind
the DrDialog background window.

DrDialog also divides the windows it owns into one or more collections
organized by tool name. The DrDialog Focus subcommand can be used to bring
all dialogs belonging to a particular tool back to the foreground.

Note: The standard DrRexx Owner function can be used to take ownership of
the dialog away from DrDialog at some later point if desired.

178

DrDialog 'Focus' subcommand

rc = DrDialog('FOCus', toolName)

Requests that DrDialog bring all dialogs registered as belonging to toolName
to the foreground. It returns 0 if no dialogs belonging to toolName are
found; and 1 otherwise.

Dialogs are registered with DrDialog using the DrDialog Owner subcommand.

DrDialog 'GetRES' subcommand

resData = DrDialog('GEtres')

Requests that DrDialog capture and return the contents of the current set of
dialogs being edited in .RES file format. That is, it behaves as if the user
had requested that the current edit session be saved to a file, and returns
what DrDialog would have written to the .RES file as the result.

The format of the resData returned is that of a standard 0S/2 resource file
with the addition of a few new resource types unique to DrDialog/DrRexx.

DrDialog 'SetRES' subcommand

rc = DrDialog('SETres', resData)

Requests that DrDialog discard all current dialogs being edited and load the
set of dialogs specified by resData. Returns 1 if successful, and 0
otherwise .

ResData must be structurally equivalent to the contents of a valid resource
(i.e. .RES) file created by DrDialog.

Note: When DrDialog receives this request, it will discard the current set
of dialogs being edited, even if changes have been made. It is the tool
writer's responsibility to prevent the user from losing data. The DrDialog
Modified subcommand can be used to check if changes have been made in the
current DrDialog edit session.

179

DrDialog 'Filename' subcommand

oldFilename = DrDialog('FIlename' [, newFilename])

Returns the name of the current .RES file being edited by DrDialog, or the
null string if no file name has been specified. If newFilename is specified
, DrDialog saves it as the new name of the file being edited.

DrDialog 'Modified' subcommand

oldModified = DrDialog('Modified', newModified)

Returns 1 if changes have been made to the set of dialogs currently being
edited by DrDialog, and 0 if no changes have been made. If newModified is
specified, it sets the modified state of DrDialog to modified if newModified
is not zero, and to unmodified if newModified is 0.

DrDialog 'Dialogs' subcommand

dialogs = DrDialog('DIALOGS')

Returns as a blank delimited string the ID numbers of all dialogs currently
being edited by DrDialog (e.g. '100 200 300').

DrDialog 'Controls' subcommand

controls = DrDialog('CONTROLS')

Returns as a blank delimited string the ID numbers of all controls in the
current dialog being edited by DrDialog (e.g. '100 101 102 111'). The ID
number of the dialog frame is always the first ID returned.

180

DrDialog 'Events’' subcommand

events = DrDialog('EVENTS', class)

Returns as a blank delimited string the names of all events defined for the
control type specified by class. For example, if class is PUSHBUTTON, the
result is 'Click Init'.

DrDialog 'Globals' subcommand

dialogs = DrDialog('DIALOGS')

Returns as a blank delimited string the names of all global procedures
currently defined by the DrDialog session (e.g. 'Init AddDigit FormatData
|).

DrDialog 'Global' subcommand

oldCode = DrDialog('GLOBAL', name [, newCode])

Returns the definition of the global procedure specified by name in the
current DrDialog session. If newCode is specified, it replaces the current
definition of name, unless newCode is the null string, in which case name 1is
deleted.

If name is not defined, the null string is returned. If name is not defined
and newCode is specified and not the null string, name is added to the list
of global procedures.

DrDialog 'NewDialog' subcommand

actualld = DrDialog('NEWDialog' [, newId])

181

Requests DrDialog to create a new dialog and select it for editing. If newIld
is specified, DrDialog attempts to assign newId as the ID of the new dialog
. It returns the actual ID assigned to the new dialog (which may be
different from newId if newId is already in use).

DrDialog 'NewControl' subcommand

actualld = DrDialog('NEWControl', id/class [, newId])

Requests DrDialog to create a new control, either cloning an existing
control with a specified id, or having a specified class. If newld is
specified, DrDialog attempts to assign newlId as the ID of the new control.
It returns the actual ID assigned to the new control (which may be different
from newId if newlId is already in use).

If id is specified, it must be the ID of an existing control which is not of
type DIALOG. The newly created control will be identical to id, including
its size and position.

If class is specified, it must be a valid DrDialog control type, but not

DIALOG (e.g. PUSHBUTTON). A new control of the specified type will be
created and positioned in the center of the current dialog being edited.

DrDialog 'DropDialog’' subcommand

CALL DrDialog 'DROPDialog' [, id]

Requests DrDialog to discard the dialog specified by id. If id is omitted ,
it defaults to the current dialog being edited.

If the dialog being discarded is the current dialog, DrDialog will
automatically select another dialog as the new current dialog. If there are
no other dialogs, DrDialog will automatically create a new empty dialog.

DrDialog 'DropControl’ subcommand

CALL DrDialog 'DROPControl' [, id]

182

Requests DrDialog to discard the control specified by id. If id is omitted,
it defaults to the current selected control, if any.

DrDialog 'Dialog’' subcommand

oldId = DrDialog('DIALOG' [, newId])

Returns the ID of the current dialog being edited by DrDialog. If newId is
specified, it requests that DrDialog select the specified dialog as the new
current dialog being edited.

DrDialog 'Control' subcommand

oldId = DrDialog('CONTROL' [, newId])
actualld = DrDialog('CONTROL', id, newId)

In the first form, it returns the ID of the current active DrDialog control,
if any. If no control is currently active, it returns the null string. If
newId is specified, it requests that DrDialog deselect all current controls
and select newId as the new active control.

If the second form is used, it requests that DrDialog assign newld as the
new ID of the control whose current ID is id. The actual new ID assigned is
returned as the result (it may be different from newId if newId is already
in use).

DrDialog 'Select' subcommand

oldIdList = DrDialog('SELect' [, newIdList])

Returns as a blank delimited string the IDs of all currently selected
DrDialog controls (e.g. '105 101 118'). The first ID in the list is always
the current active control. If no controls are currently selected, the null
string is returned.

If newIdList is specified, DrDialog unselects all currently selected
controls and selects all the controls specified in newIdList, which should
be a blank delimited list of control IDs, with the first ID in the list
being the ID of the new active control.

183

Note: Not all controls in newIdList may end up being selected. DrDialog does
not allow a container control and any of its contained controls to be
selected at the same time.

DrDialog 'Name' subcommand

oldName = DrDialog('NAme', id [, newName])

Returns the name currently assigned to the DrDialog control or dialog whose
ID is specified by id. If no name is currently assigned to id, the null
string is returned.

If newName is specified, DrDialog attempts to assign it as the new name for
the control or dialog specified by id.

Note: If newName has already been assigned to another control or dialog ,

DrDialog will attach a numeric suffix of the form _n to newName and use that
as the new assigned name.

DrDialog 'Text' subcommand

oldText = DrDialog('Text', id [, newText])

Returns the text currently associated with the DrDialog control whose ID is
specified by id.

If newText is specified, DrDialog replaces the current text with newText.
The text associated with a control varies from control to control. For a
pushbutton, it is its label. For a dialog, it is its window bar title. For a
multi -line edit control, it is the complete text contained within the
control. Other controls may have not any text associated with them (e.g. a

Rectangle control). In that case, the result returned is the null string,
and any value set is ignored.

DrDialog 'Hint' subcommand

oldHint = DrDialog('Hint', id [, newHint])

184

Returns the hint text currently associated with the DrDialog control whose
ID is specified by id.

If newHint is specified, DrDialog replaces the current hint text with
newHint .

The hint text associated with a control is displayed at run-time whenever
the pointer passes over the control.

DrDialog 'Position' subcommand

oldPos = DrDialog('Position', id [, newPos])
oldPos = DrDialog('Position', id [, newX [, newY
[, newDX [, newDY]]]])

Returns the current position and size of the DrDialog control whose ID 1is
specified by id as a string of the form: x y dx dy, where x y is the
coordinate of the lower left hand corner of the control, and dx dy is the
width and height of the control in pels.

If newPos is specified, DrDialog sets the new size and position of the
control using the values in newPos, which should be a string of the form: x
y dx dy. If any trailing values are omitted, their current values remain
unchanged .

If newX, newY, newDX and newDY are specified, DrDialog uses these values to
set the new position and size of the control. If any trailing arguments are
omitted, their current values remains unchanged.

In either case, DrDialog will adjust the values specified if the resulting

size or position would place the control outside the boundaries of the
current dialog (or the screen if the control specified is the dialog frame).

DrDialog 'Style' subcommand

oldStyle = DrDialog('STyle', id [, newStyle])

Returns the style currently associated with the DrDialog control whose ID 1is
specified by id. The style returned is always a four byte long string whose
bits correspond to the style bit mask associated with the control.

If newStyle is specified, DrDialog replaces the current style mask with
newStyle, which must also be a four byte long string encoding the new style

185

bit mask for the control.

DrDialog 'Font' subcommand

oldFont = DrDialog('FONt', id [, newFont])

Returns the font currently associated with the DrDialog control whose ID is
specified by id. The font is returned as a string of the form: size.name,
where size is the point size, and name is the family name of the font (e.qg.
10.Courier). If the current font is the default font for the control, the
null string is returned.

If newFont is specified, DrDialog replaces the current font with newFont,
which must also be a string of the form: size.name or the null string. If
the null string is specified, DrDialog resets the font for the control back
to the default font.

DrDialog 'Color' subcommand

oldColor = DrDialog('COLor', id , attribute [, newColor])

Returns the specified color attribute for the DrDialog control whose ID is
specified by id.

Attribute specifies which color attribute the function applies to. The
attribute consists of a string of characters, each of which specifies a
color attribute modifier. The defined attribute modifiers are as follows:

Foreground (group 1)
Background (group 1)
Active (group 2)
Inactive (group 2)
Highlight (group 2)
Disabled (group 2)
Text (group 3)

Menu (group 3)
Border (group 3)

=E2HOITHX> " +

The three groups represent more or less disjoint sets of attributes. In
forming an attribute name, no more than one character from each group should
be used . However, not all combinations of characters specify a valid color
attribute . The list of valid color attribute character combinations is as
follows:

186

+ Foreground color

Background color

A Active color

I Inactive color

AT+ Active text foreground color
AT- Active text background color
IT+ Inactive text foreground color
IT- Inactive text background color
H+ Highlight foreground color

H- Highlight background color

D+ Disabled foreground color

D- Disabled background color

M+ Menu foreground color

M- Menu background color

MH+ Menu highlight foreground color
MH- Menu highlight background color
MD+ Menu disabled foreground color
MD- Menu disabled background color
B Border color

Note: The order of the characters in attribute does not matter.

Not all controls support all color attributes. The most commonly supported
attributes are foreground and background color.

If newColor is specified, the specified control color attribute is replaced
by newColor.

Note: A color is specified as a string of the form:
#index

or #red green blue

where index is a color index, and red, green and blue are the color
components of an RGB triplet (each component should be in the range 0 to
255).

The result of the function is also one of these two forms, depending on
which form was originally used to set the corresponding color attribute.

Note: If no color attribute has been specified for a control, the null
string is returned as the result.

DrDialog 'Event’ subcommand

oldCode = DrDialog('EVENT', id, event [, newCode])

187

Returns the REXX event handler code currently associated with the event
specified by event for the DrDialog control whose ID is specified by id.

Event must be a valid event for the class of control specified by id (e.g
the valid events for a control of class PUSHBUTTON are Init and Click). A
list of valid event names for a particular class of control can be obtained
using the Event subcommand of the DrDialog function.

If newCode is specified, it replaces the current event handler for the
specified event and id. If newCode is specified, but is the null string, the
current event handler for event and id is deleted.

DrDialog 'Class’' subcommand

class = DrDialog('CLass', id)
oldCode = DrDialog('CLass', class, event [, newCode])

In the first case, it returns the class of the DrDialog control whose ID is
specified by id.

In the second case, it returns the REXX class handler code currently
associated with the event specified by event for the DrDialog control class
specified by class.

Event must be a valid event for the class of control specified by class (e
.g. if class is PUSHBUTTON the valid events are Init and Click). A list of
valid event names for a particular class of control can be obtained using

the _Event subcommand of the DrDialog function.

If newCode is specified, it replaces the current class handler for the

specified event and class. If newCode is specified, but is the null string,
the current class handler for event and class is deleted.

DrsAide tools

The DrDialog package includes a number of tools written in DrRexx using the DrsAide extension mechanism.
These tools are intended to both increase the power and usefulness of the DrDialog programming environment as
well as to illustrate how to write additional DrsAide tools.

Some of the tools are pre-installed in the DrsAide tool, while others can be installed at the user's discretion using
the methods discussed in the section on using the default DrsAide tool from the Workplace Shell. The available

tools are :

Array Generates and lays out a rectangular grid of controls (pre-installed)

188

REView Displays the current set of dialogs in outline form (pre-installed)
REStoRXX Writes all REXX source code for the current set of dialogs into an annotated listing file (pre-installed)
Rexxl.ib Browses all code currently stored in the REXX library (pre-installed)

RexxUse Includes as global procedures all REXX library routines referenced by the current set of dialogs
(pre-installed)

BMPList.RES Displays .BMP and .GIF files (optional tool available in the SAMPLE subdirectory)
Clock.RES Simple clock (optional tool available in the SAMPLE subdirectory)
Clock2.RES Fancier clock (optional tool available in the SAMPLE subdirectory)

Calc.RES Simple calculator (optional tool available in the SAMPLE subdirectory)

Array tool

o] el el
el el el
el el el

The array tool provides a simple interface for creating and laying out rectangular grids of the same kind of control
(e.g. a grid of ICONBUTTON:S for a tool bar).

To use the array tool:

1.Make an instance of the control you wish to create an array of.
2.Initialize and set its attributes (i.e. size, text, font, colors, style).
3.Position it at the top-left corner of the rectangular array you wish to create.
] el
]]]
4.Invoke the array tool from the DrsAide tool by clicking the == =] button.
5.Use the appropriately labeled spin buttons in the array tool to specify the number of rows and columns the array
of controls is to have.
6.Use the appropriately labeled spin buttons to specify the horizontal and vertical spacing between controls in the
array.

7.Click the Create button to create the array of controls and lay them out .

If the spacing is not quite right, simply change the values displayed in the spacing spin buttons and click the
Space button to lay out the controls in the array again. Repeat this step until you are satisfied with the layout.

If you make a mistake or change your mind, you can delete all the controls in the array (except the original) by
clicking the Delete button.

Once you are finished you can either close the array tool, or click the Done button to signal that you are ready to
create a new array of controls.

Note: The Create button creates an array of controls using the currently selected control as its template. It copies
the class, size, text, font, colors and style of the selected control to each new control in the array. Once an array of
controls has been created, clicking the Done button re-enables the Create button and allows a new array of
controls to be created from the currently selected control.

189

REView tool

fledLe
T
" #ie

The review tool displays the current set of dialogs being edited in outline form. The outline consists of labeled
icons, each representing a particular dialog or dialog component.

Initially, the outline is in its collapsed form, with only the dialog and global procedure icons displayed. Clicking
the plus sign to the left of an icon expands the outline to include the components of the icon.

In the case of a dialog icon, expanding it displays an icon for each control within the dialog, including the frame
and drop-down menu if any. Further expanding a control icon displays icons for each event or class handler
defined for the control. Expanding a drop-down menu icon displays icons for each submenu or menu item.

Expanding the global procedures icon displays an icon for each defined global procedure.

Double-clicking an icon that represents code, such as a global procedure or control event handler, displays its
associated REXX code in the tool's edit control. Alternatively, you can also drag the icon and drop it on the edit
control to display its associated REXX code. If desired, the Copy to clipboard menu option can be used to copy
the code to the system clipboard.

Once an icon has been expanded, it can be collapsed again by clicking the minus sign to the left of the icon.

RexxUse tool

ot

The RexxUse tool defines as global procedures any REXX library routines referenced by the current set of dialogs
being edited. It searches through your application's REXX code looking for procedure references of the form:
CALL _ procedure_ or _function_(...), and if _procedure_ or _function_ is defined in the REXX library, it
copies the definition from the library into the application as a global procedure.

REXX library references within already included REXX library routines are also resolved automatically. In
addition, if a previously included REXX library routine is no longer referenced by the application, its global

procedure will be deleted from the application.

Note: Procedures may be entered into the REXX library using the RexxLib tool.

RexxLib tool

The RexxLib tool allows you to update and browse the contents of the REXX library. The REXX library is a
collection of generally useful REXX functions and procedures that can easily be included into any application
using the RexxUse tool.

The RexxLib tool can be invoked in one of two ways:

190

oFrom the DrsAide tool by clicking the button. When invoked this way, RexxLib allows you to browse
through the names and definitions of all current REXX library entries. A list of all current library entries appears

on the left side of the dialog. Double-clicking an entry displays its definition on the right. The bottom of the
dialog also displays information about the origins of the routine . Clicking the Copy to clipboard button copies
the current definition to the system clipboard.

oFrom the Workplace Shell. Dragging and dropping a file containing REXX procedures onto the RexxLib icon in
the DrDialog folder adds or updates the REXX procedures contained in the file to the REXX library. For each
procedure in the file, one of the following actions occurs:

-If the procedure is not already in the REXX library, it is added to the library.

-If the procedure is already in the library, and was originally from the same file, its definition is updated.

-If the procedure is already in the library, and was originally from a different file, its definition is not updated. A
warning message is displayed indicating that the procedure is already defined by another file. Double-clicking on
the warning message will override the warning and replace the previous definition of the procedure with the new
one.

In addition, if the REXX library contains procedures previously defined by the file, but which are no longer
contained in the file, those definitions are deleted from the library.

The file containing REXX procedures should have the following format:

[discarded header information]
_labell : [REXX statements]
[more REXX statements]
_label2 : [REXX statements]
[more REXX statements]

_labeln : [REXX statements]
[more REXX statements]

In order to be recognized as a REXX library procedure, the label defining
the start of a procedure must begin and end with underscores (i.e. ' ')

The label is used as the name of the entry in the REXX library. The
definition of the entry consists of all following REXX statements until the
next label beginning and ending with underscores, or the end of the file, is
encountered. Other labels not meeting the above criteria are simply included
as part of the definition of the last label that does.

BMPList tool

B

The BMPList tool allows you to browse collections of .BMP and .GIF files. A radio button allows you to select

which type of file you are currently interested in. To select a group of files for browsing, enter the path name of
d

their directory into the entry field, then press Enter or click the — | button. The list box will display the names
of all selected files in the specified directory. To view a particular file, simply select its name from the list box. If

191

the currently selected control is an ICONBUTTON or BILLBOARD, the image selected will also appear in the
control.

To temporarilly save a copy of a particular image, click the J button and a new dialog containing a copy of
the image will be created.

Each image dialog also has controls to allow the current image to be viewed :
oCentered within the display area

oScaled to fill the entire display area
oReplicated to fill the entire display area

Writing your own DrsAide tool

There are basically three parts to writing a DrsAide tool:

oCreating the tool
olntegrating the tool into DrDialog
oCreating a bitmap for the tool's DrsAide icon button

The first part, creating the tool, is usually accomplished using various subcommands of the DrDialog function to
examine and modify information within the DrDialog programming environment. Feel free to use any of the
DrsAide tools distributed with DrDialog as examples of how to go about doing this.

The second part, integrating the tool into DrDialog, can easily be accomplished using several REXX library
functions provided with DrDialog:

DrsAidelnit This function should be called from the Init global procedure of your tool. Its purpose is to
initialize the link to DrDialog via the DrDialog function and to open the first dialog of your tool if it was invoked
via DrsAide. Its usage is:

rc = DrsAideInit (hwnd, iniFile [, dialog] [, bitmap])

where hwnd and iniFile are the first two command line arguments passed to
the tool by DrsAide, dialog is the optional name of the dialog to open (it
defaults to the first dialog in the application), and bitmap is the name of
the bitmap to display on the DrsAide icon button for your tool (specified
only if your tool does not have a .BMP file with the same name as the tool's
.RES file).

The function returns 1 if the tool was invoked from DrsAide, and 0 otherwise
If 0 is returned, you may wish to initialize the tool differently, or
display an error message.

For example:

192

PARSE ARG hwnd iniFile rest
IF DrsAideInit(hwnd) = 0 THEN EXIT

_DrsAideDialogInit This routine should be called from the Init event
handler of each dialog opened by your tool (unless the dialog is owned by
another dialog in your tool). It registers the dialog with DrDialog and
attempts to restore the last saved size and position of the dialog.

Note: This procedure also shows the dialog. It is a good idea to create the
dialog with the Visible attribute of the dialog off in order to allow the _
DrsAideDialogInit procedure to size and position the dialog correctly before
displaying it.

Its usage is:

CALL DrsAideDialogInit hwnd, iniFile

where hwnd and iniFile are the first two command line arguments passed to
the tool by DrsAide.

For example:

...1in Init global procedure ...
PARSE ARG hwnd iniFile rest

... 1in dialog Init event handler ...
CALL DrsAideDialogInit hwnd, iniFile

_DrsAideDialogExit This routine should be called from the Exit event
handler of each dialog opened by your tool whose Init handler calls
DrsAideDialogInit . It saves the size and position of the dialog in the
DrsAide .INI file so that its location can be restored by the
DrsAideDialogInit procedure the next time the tool is invoked. Its usage
is:

CALL DrsAideDialogExit hwnd, iniFile

where hwnd and iniFile are the first two command line arguments passed to
your tool by DrsAide.

For example:

...1in Init global procedure ...
PARSE ARG hwnd iniFile rest

... 1in dialog Exit event handler ...
CALL DrsAideDialogExit hwnd, iniFile

193

The source for each of the above routines is contained in the DrsAide.RXL
file in the DrDialog folder. To add these routines to your REXX library,
drag and drop the DrsAide.RXL file icon onto the RexxLib icon, also in the
DrDialog folder. Once you have done this, you may obtain more detailed
information by browsing their source using the RexxLib tool.

Also, once installed into your REXX library, you may incorporate these
routines into a tool by first writing the code invoking them and then using
the RexxUse tool to automatically include the correct procedures into your
application.

Alternatively, you can use the DrsAideT.RES template in the DrDialog
directory to quickly create a template for a new DrsAide tool. Drag and drop
the DrsAideT.RES icon into a folder to create a new .RES file which has the
appropriate calls to the routines just described already installed. Once the
new . RES file is created, you can:

oRename the tool by clicking on its icon label with the Alt key pressed and
then typing in the name of the tool you are creating.

oInstall the tool into DrsAide by dragging and dropping the new .RES file 's
icon onto the DrsAide icon in the DrDialog folder. By default, the new tool
will use a standard icon in the DrsAide tool bar. If you wish, you can
create a new .BMP file with the same name prior to installing the .RES file
into DrsAide, or you can change the default icon later by double-clicking
the DrsAide icon to edit the tool's bitmap name directly.

oDefine the tool by dragging and dropping the new .RES file's icon onto the
DrDialog icon in the DrDialog folder. Once the editor is invoked, you may
add the necessary controls and REXX code to complete your application. Once
the tool has been saved, you can test it simply by clicking on its icon
button in the DrsAide tool bar.

The final part, creating a bitmap for the tool's DrsAide icon button, can be
done using any bitmap editor (e.g. ICONEDIT.EXE). The resulting bitmap
should be given the same name as your tool's .RES file. This will allow
DrsAide to locate the bitmap when a user installs your tool.

Alternatively, if you wish to use a bitmap stored in a .DLL (e.qg.
BITMAP.DLL), you can supply the name of the bitmap in the call to the
_DrsAideInit _ function. When the user installs your tool and DrsAide is not
able to find a corresponding .BMP file, it will invoke your tool with a
special command line argument which indicates that your tool must install
itself. If you call _ DrsAideInit_ in your global Init procedure and pass it
the name of the bitmap to use, it will automatically handle this special
case and install your application correctly .

And finally, each tool invoked by DrsAide is passed as its second command
line argument the name of an .INI file the tool can use to save information
in . Information can saved and restored in the .INI file using the REXX
SysIni function. The REXX library _DrsAideIniApp_ function can also be used
to generate application keys of the form: resFile:dialog (e.g. Calc:calc)

194

These can be used with the SysIni function to ensure that each DrsAide tool
uses unique application keys for its data. The usage for _DrsAideIniApp_ is

key = DrsAideIniApp ()
Note that this function will generate a unique application key for each tool

dialog it is used from.

For example, a DrsAide tool that does special initialization the first time
it is invoked might use the following code:

PARSE hwnd iniFile rest

/* Dialog 'Init' event handler: */

IF SysIni(iniFile, DrsAideIniApp (), 'Inited') = 'ERROR:' THEN DO
CALL SysIni iniFile, DrsAideIniApp (), 'Inited', 1

/* One time initialization code goes here... */

END

Adding hints to your DrsAide tool

Since a DrsAide tool is really just a DrRexx application, it can have user hints like any other DrRexx program.
See the section on adding user hints to a DrRexx application for more information on how to do this.

Ideally though, it would be useful if a DrsAide tool's hints appeared in the same hint controls as the DrDialog
editor, providing a seamless integration of DrsAide tools with other DrDialog tools. And this is just what
happens!

When your DrsAide tool registers itself with DrDialog using the Owner subcommand of the DrDialog function, it
is automatically set up to display its hint text in the same controls that DrDialog uses. Note however that this will
only work correctly if your DrsAide tool does not explicitly set a hint control using the IsDefault function, either
before or after issuing the Owner subcommand. By default it will just do the right thing!

195

196

Utilities

The DrDialog package includes four utilities that help create and maintain DrDialog and DrRexx applications:
BMPTODLL Create a .DLL from one or more .BMP, .ICO or .PTR files.

REStoRXX Create a source listing of the REXX code associated with a DrRexx .RES file.

REView Display a DrRexx .RES file in the form of an outline

REVise Allows sections of a DrRexx .RES file to be cut and pasted using drag and drop operations.

BMPtoDLL

The BMPtoDLL utility creates a .DLL from one or more .BMP, .ICO or .PTR files. This utility is useful in
conjunction with DrDialog ICONBUTTON and BILLBOARD controls, which can display bitmaps stored in a
.DLL.

The syntax for invoking BMPtoDLL is:

BMPtoDLL dllName [filel file2 ... filen]

where dllName is the name of the .DLL to create (the .DLL extension is
optional). Filel through filen are the names of the .BMP, .ICO or .PTR files
to include in the .DLL. Wildcard characters (i.e. '*' or '?') may be used in
the file names. If not specified, filel defaults to '*.BMP'.

Note: The BMPtoDLL command uses a data file called BMPtoDLL.DAT, which must
be present either in your PATH or DPATH. If it cannot be found, an error
message will be displayed and no .DLL file will be created.

REStoRXX

The REStoRXX utility creates a source file listing of the REXX code associated with a DrRexx .RES file. To use
REStoRXX, drop any DrRexx .RES file onto the REStoRXX icon in the DrDialog folder. REStoRXX will
create a file with the same name, but with a .RXX extension, containing a listing of the REXX source code
associated with the .RES file.

Note: The .RXX source file created by REStoRXX is very similar to the REXX program created by DrDialog
when your DrRexx application runs, but it is not identical. The source listing is intended mainly as documentation
for your DrRexx application. At present, there is no way for the .RXX file to be directly imported back into
DrDialog.

197

REView

The REView utility displays a DrRexx .RES file in the form of an outline . At the top level of the outline are
dialogs and globals procedures. At the level below a dialog are the dialog's controls and drop down menu. At the
level below a control are its event handlers, and so on. The outline may be expanded or collapsed to display more
or less detail about the structure of the application.

To invoke REView from the Workplace Shell, drop any DrRexx .RES file onto the REView icon in the
DrDialog folder.

For more information about how to use REView once it has been invoked, refer to the REView tool section in the
DrsAide portion of this document.

REVise

The REVise utility provides a simple, graphical means of copying dialogs and REXX code from one DrRexx
application to another.

REVise works by displaying a DrRexx .RES file in the form of an outline . At the top level of the outline is the
RES file itself. At the level below that are sections for dialogs, globals procedures and any external code
contained in the file. And finally, at the level below that are the individual dialogs and global procedures
contained within the file. Levels within the hierarchy can be expanded or collapsed as desired. Each icon within
the hierarchy can also be dragged and dropped on either the Add or Delete icons located at the bottom of the
dialog, either in the same dialog, or in the case of the Add icon, in any other instance of the REVise utility
currently running.

Dropping an object on the Add icon adds an identical copy of the specified object to the corresponding .RES file.
If any names or IDs within the object being copied conflict with names or IDs already in the target .RES file, the
REVise utility will automatically rename or renumber the objects as needed to avoid conflicts. Messages
indicating the changes made will be displayed in a pop-up message log window. Note that copying a dialog also
copies any REXX event handlers associated with the dialog.

Dropping an object on the Delete icon removes the specified object from the .RES file. Note that objects can only
be deleted from the .RES file they are contained in.

No changes are actually made to the .RES file until you close the dialog . At that time, if any changes have been
made, you will be asked whether you wish to save or discard the changes.

To invoke REVise from the Workplace Shell, drop any DrRexx .RES file onto the REVise icon in the DrDialog
folder.

198

User preferences

DrDialog keeps track of a number of user preference items in the DRDIALOG .INI file.
The user preference items are:

oThe last position, size and pattern for the background window

oThe last position and size of each tool window

oThe Auto open, Auto hide, and Float settings of each tool window

oThe last set of ID tool options used

oThe last selected size tool unit (pels or dialog units)

oThe name of the last dialog file saved or loaded

oThe dialog file save options last used

oThe last application switched to using the <- Switch button

oThe last font and color set for both the DrRexx event and drop-down menu action multi-line edit controls. Note
that the font can be set by dragging and dropping a Workplace Shell Font Palette object onto either mult-line edit
control. The color can be set by dragging and dropping a Workplace Shell Color Palette object onto either
mult-line edit control.

These preference items are used the next time the editor is run to restore the editing environment to its previous
state as much as possible.

199

200

Related packages

The ZBMFUNCS package on OS2TOOLS by Dario de Judicibus contains several . DLL files containing bitmaps
that are well suited for use with DrDialog bitmap buttons. The .DLL's are organized by category, and include
alphabetical and typographical symbols, as well as symbols useful with paint and publishing programs. All of the
bitmaps in the collection are well executed graphically and visually appealing.

201

202

Acknowledgements

David C. Morrill

DrDialog was written by:

David C. Morrill
IBM T. J. Watson Research Center

TOPVIEW at YKTVMH
topview@watson.ibm.com

DrDialog is an object-oriented program completely written in Oberon-2 using
the HOPE Oberon programming environment, also written by David C. Morrill.
HOPE is available separately as the HOPE PACKAGE on 0S2TOOLS.

Screen capture for this document was done using BMP, another Oberon program
developed by David C. Morrill using HOPE.

203

204

Footnote

Clicking the Replace button updates the selected menu item with the current values of the Text, Label, Action,
Checked and Disabled fields.

205

206

Footnote

Clicking the Cancel button restores the Text, Label, Action, Checked and Disabled fields to their last saved
state.

207

208

Footnote

Clicking the Delete button deletes the currently selected menu item.

209

210

Footnote

Clicking the Menu Item button inserts a new menu item after the currently selected menu item. The contents of
the Text, Label, Action, Checked, and Disabled fields are used to define the new menu item.

If the action field is empty, the menu item is a static menu item.

211

212

Footnote

Clicking the Submenu button inserts a new submenu after the currently selected menu item. The new submenu
initially has no menu items. The contents of the Text, Label, Checked and Disabled fields are used to defined

the new submenu item.

213

214

Footnote

Clicking the Separator button inserts a new separator after the currently selected menu item. The contents of the
Text, Label, Action, Checked and Disabled fieclds are ignored.

215

216

Footnote

The state of the Checked field is used to set the check status of a menu item when the Replace, Menu Item, or
Submenu buttons are clicked.

217

218

Footnote

The state of the Disabled field is used to set the disabled status of a menu item when the Replace, Menu Item, or
Submenu buttons are clicked.

219

220

Footnote

The contents of the Text field are used to set the text of a menu item when the Replace, Menu Item, or
Submenu buttons are clicked.

221

222

Footnote

The contents of the Label field are used to set the label of a menu item when the Replace, Menu Item, or
Submenu buttons are clicked.

223

224

Footnote

The contents of the Action field are used to define the REXX code associated with a menu item when the
Replace or Menu Item buttons are clicked.

225

226

Footnote

The menu bar shows what the drop-down menu being edited will look like when the application is running.
Selecting an item from the menu will also select the corresponding menu item for editing.

227

228

Footnote

The left-most listbox shows the menu items currently defined for the menu bar . Selecting an entry from the list
selects the corresponding menu item for editing or insertion.

229

230

Footnote

The middle listbox shows the menu items currently defined for the submenu selected in the left-most listbox.
Selecting an entry from the list selects the corresponding menu item for editing or insertion.

231

232

Footnote

The right-most listbox shows the menu items currently defined for the submenu selected in the middle listbox.
Selecting an entry from the list selects the corresponding menu item for editing or insertion.

233

234

Footnote

Clicking the stop button terminates execution of the DrRexx application.
If running in the stand-alone DrRexx environment, the entire application is terminated.

If running under control of the DrDialog editor, all application dialogs are closed and control returns to the editor.

Run mode is ended and edit mode resumes . The J button replaces the @ button. You may click the run
button to start the DrRexx application again.

Note: While in edit mode, all DrRexx run-time controls (other than the run button) are disabled.

235

236

Footnote

Clicking the break button interrupts the currently executing REXX code (if any) and forces the run-time
environment to wait for the next input event.

If REXX code was being executed, an error message indicating what code was executing will be displayed in the
output list control.

237

238

Footnote

Clicking the clear button clears the contents of the output list control.

239

240

Footnote

Clicking the evaluate button causes the contents of the entry field to its right to be interpreted as a REXX
statement. This can be useful for displaying or modifying information about the state of the currently running
DrRexx application.

1
+1
Note: If interactive debug mode is active, the J button may be replaced by the J button. This indicates
that the contents of the entry field to the right of the button will be used to control the REXX interactive trace. It

also indicates that the REXX code is suspended in trace mode, and is not ready to process the next input event.
The reappearance of the evaluate button indicates that the DrRexx application is waiting for the next event.

241

242

Footnote

Clicking the trace button toggles between REXX #race and interactive debug modes. The current mode is

indicated by the appearance of the trace button. The button indicates trace mode, while the button

indicates interactive debug mode .
In trace mode, REXX trace messages appear in the output list control, but the program does not stop.

In interactive debug mode, REXX trace messages appear in the output list control, and execution stops after every

trace event. Clicking the J button allows the contents of the entry field to its right to control REXX
interactive debug mode .

Note: The trace button does not turn REXX trace mode on or off, but only indicates whether the trace should be
interactive or not. The drop down list to its right can be used to set the current trace mode.

243

244

Footnote

Selecting an item from the trace mode list determines the current REXX trace mode in effect. See the
Procedures Language/2 REXX Reference for a detailed explanation of the various REXX trace modes.

The ! button can be used in conjunction with the setting of this control to select whether tracing should be
interactive or not.

245

246

Footnote

Clicking the variables control displays the current value of all REXX variables for the DrRexx application in the
control's drop down list.

Selecting an item in the list will copy a statement of the form SAY 'var =' var to the entry field to allow for easy
1
1

+

J

monitoring of the selected variable using the —=:_1 button.

247

248

Footnote

+
.

J

The current contents of the interpret field can be evaluated as a REXX statement by clicking on the J
button to its left or by pressing the Enter key.

Note: In interactive debug mode, the evaluate button is replaced by the J button. The contents of the
interpret field are then used to control interactive debug mode when the debug button is clicked.

249

250

Footnote

The contents of the output list shows the results of REXX SAY statements or program trace messages. Only the
last 100 messages issued are displayed.

Selecting an entry in the list copies it to the interpret entry field above it (unless the selected item is of the form
var = value, in which case SAY ' var ="' var is copied to the interpret field.

251

252

Footnote

Clicking the undo button restores the edit control to the last saved value of the text (or the original value if it has
not yet been saved).

The text can be saved by clicking on the button located just above the undo button.

253

254

Footnote

Clicking the save button saves the current contents of the edit control. If you later make some changes to the text

% | button located

that you wish to discard, you can restore the text back to the last saved value by clicking the
just below the save button..

255

256

Footnote

Clicking the paste button replaces the currently selected text with the contents of the system clipboard.

257

258

Footnote

Clicking the copy button copies the currently selected text into the system clipboard.

259

260

Footnote

Clicking the cut button deletes the currently selected text and copies it into the system clipboard.

261

262

Footnote

Clicking the find button searches the edit control for the next occurrence of the text string currently in the search
field next to the find button. The search always begins at the current cursor position.

263

264

Footnote

Clicking the switch button causes the application whose OS/2 Presentation Manager Window List entry starts
with the contents of the search field to be brought to the foreground.

265

266

Footnote

Enter the text to search for into the search field, then click the Find button to search for the text in the edit
control. The search always begins at the current cursor location.

267

268

Footnote

Selecting an item in the spin button control selects the type of text to be displayed in the edit control:

Control The control specific REXX code

Class The generic class REXX code

Events The set of events defined for the control

Functions The set of window functions defined for the control

269

270

Footnote

Clicking the notepad page tab will select the DrRexx notepad section, which allows you to enter and edit REXX
code fragments or other useful pieces of information that will be available in every DrDialog editing session.

271

272

Footnote

Clicking the global procedures page tab will select the global procedures section, which allows you to enter and
edit REXX procedures callable from other parts of your DrRexx application.

273

274

Footnote

Clicking the events page tab will select the events section, which allows you to enter and edit REXX event
handling code associated with the currently active control.

275

276

Footnote

The edit control allows you to enter and edit REXX code. It is a standard Presentation Manager multi-line edit
control, and it uses the same font as the System Editor .

277

278

Footnote

The status line displays the name, ID, and type of the currently active control.

279

280

Footnote

Clicking an event page tab selects the code associated with the event whose name appears on the tab into the edit
control for editing.

281

282

Footnote

Clicking a global procedure page tab selects the code associated with the procedure whose name appears on the
tab into the edit control for editing.

283

284

Footnote

All currently defined global procedures are displayed alphabetically in this list. Double-clicking an entry in the
list will select the page containing the code associated with the selected procedure.

285

286

Footnote

Enter the name of a global procedure into this entry field and press Enter to edit it. If the name is new, a blank
notebook page will be created with the name of the procedure on its page tab.

287

288

Footnote

Clicking a notepage page tab selects the text associated with the note whose name appears on the tab into the edit
control for editing.

289

290

Footnote

All currently defined notes are displayed alphabetically in this list. Double-clicking an entry in the list will select
the page containing the text associated with the selected note.

291

292

Footnote

Enter the name of a note into this entry field and press Enter to edit it . If the name is new, a blank notebook page
will be created with the name of the note on its page tab.

293

294

	Table of Contents
	Introduction
	Asking for help
	Editing a dialog
	Container controls
	Tabbing order
	Selecting controls
	Moving controls
	Moving controls between dialogs
	Copying controls
	Copying controls between dialogs
	Sizing controls
	Editing a control's style information
	Editing a control's REXX code
	Editing a control's attributes using the pop-up menu
	Keyboard shortcuts

	Tools window
	Tools window
	Help tool
	About tool
	View tool
	Grab tool
	Dialog load tool
	Dialog save tool
	Stop tool
	Controls window
	Controls window
	Group window
	Group window
	Left align controls
	Bottom align controls
	Right align controls
	Top align controls
	Horizontally center controls
	Vertically center controls
	Horizontally space controls
	Vertically space controls
	Equal width controls
	Equal height controls
	Same style controls
	Hide controls
	Show controls
	Delete controls

	Size window
	Size window
	ID window
	ID window
	Name window
	Name window
	Text window
	Text window
	Color window
	Color window
	DrRexx window
	DrRexx window
	Drop-down menu window
	Drop-down menu window
	Run-time window
	Run-time window
	Dialog select window
	Dialog select window

	Background window
	Managing your DrDialog workspace
	Invoking DrDialog
	DrDialog and the Workplace Shell
	REStoPgm
	REStoEXE

	DrRexx
	The DrRexx notebook
	Events section
	Events section
	Global procedures section
	Global procedures section
	Notepad section
	Notepad section

	Using the DrRexx editor
	Using your own editor
	Writing REXX code for DrRexx
	The DrRexx execution model
	DrRexx subcommand environments
	Error handling in DrRexx
	Invoking DrRexx
	Getting started: Your first DrRexx application
	DrRexx programming techniques
	Creating a modal dialog
	Associating data with dialogs and controls
	Adjusting controls when a dialog is resized
	Creating and displaying pop-up menus
	Signaling that data entry is complete
	Working with dynamic controls
	Putting user hints into your DrRexx application
	Preventing dialogs from initially flashing

	DrRexx sample programs
	DrRexx example programs
	DrRexx window functions
	Open
	Close
	Owner
	Frame
	Hide
	Show
	Visible
	Top
	Bottom
	Enable
	Disable
	Enabled
	Focus
	Position
	Text
	Hint
	Add
	Add (for a list box or combo box)
	Add (for a notebook)
	Add (for a container)
	Delete
	Delete (for a list box or combo box)
	Delete (for a notebook)
	Delete (for a container)
	Item
	Item (for a list box or combo box)
	Item (for a notebook)
	Item (for a value set)
	Item (for a slider)
	Item (for a container)
	Select
	Select (for a list box or combo box)
	Select (for a single line edit control)
	Select (for a horizontal or vertical scroll bar)
	Select (for a spinbutton)
	Select (for a push button, check box, radio button or bagbutton)
	Select (for a notebook)
	Select (for a value set)
	Select (for a slider)
	Select (for a container)
	Range
	Range (for a dialog)
	Range (for a single-line edit control)
	Range (for a horizontal or vertical scroll bar)
	Range (for a spinbutton)
	Range (for a value set)
	Range (for a slider)
	Style
	Font
	Color
	ID
	Drag
	Drag (for a container)
	Drop
	Drop (for a container)
	IsDefault
	Timer
	View
	SetStem
	GetStem
	Controls
	Classes

	DrRexx menu functions
	MenuPopUp
	MenuChecked
	MenuDisabled
	MenuText

	DrRexx concurrency functions
	Start
	Stop
	Result
	Notify
	Use
	Val
	Sleep
	Concurrent programming example

	DrRexx miscellaneous functions
	ModalFor
	EventData
	Event
	Control
	Class
	Dialog
	Dialogs
	FilePrompt
	Clipboard
	ScreenSize
	DrRexxVersion

	DrDialog controls
	Dialog control
	Push button control
	Check box control
	Radio button control
	Text control
	Notebook control
	Container control
	List box control
	Single line edit control
	Multi-line edit control
	Combo box control
	Spin button control
	Value set control
	Vertical scroll bar control
	Horizontal scroll bar control
	Slider control
	Group box control
	Frame control
	Rectangle control
	Billboard control
	Canvas control
	Paint control
	Bitmap button control
	Bagbutton control
	Turtle control
	Bitmap control
	User defined control
	Marquee control
	Drop event

	DrDialog specific controls
	Billboard controls
	Canvas controls
	Paint controls
	Bitmap button controls
	Bagbutton controls
	Turtle controls
	Turtle control commands

	Marquee controls

	DrsAide
	The DrsAide extension mechanism
	The DrsAide tool
	The default DrsAide tool
	Invoking the default DrsAide tool from DrDialog
	Invoking the default DrsAide tool from the Workplace Shell

	DrDialog function
	DrDialog 'Init' subcommand
	DrDialog 'Owner' subcommand
	DrDialog 'Focus' subcommand
	DrDialog 'GetRES' subcommand
	DrDialog 'SetRES' subcommand
	DrDialog 'Filename' subcommand
	DrDialog 'Modified' subcommand
	DrDialog 'Dialogs' subcommand
	DrDialog 'Controls' subcommand
	DrDialog 'Events' subcommand
	DrDialog 'Globals' subcommand
	DrDialog 'Global' subcommand
	DrDialog 'NewDialog' subcommand
	DrDialog 'NewControl' subcommand
	DrDialog 'DropDialog' subcommand
	DrDialog 'DropControl' subcommand
	DrDialog 'Dialog' subcommand
	DrDialog 'Control' subcommand
	DrDialog 'Select' subcommand
	DrDialog 'Name' subcommand
	DrDialog 'Text' subcommand
	DrDialog 'Hint' subcommand
	DrDialog 'Position' subcommand
	DrDialog 'Style' subcommand
	DrDialog 'Font' subcommand
	DrDialog 'Color' subcommand
	DrDialog 'Event' subcommand
	DrDialog 'Class' subcommand

	DrsAide tools
	Array tool
	REView tool
	RexxUse tool
	RexxLib tool
	BMPList tool

	Writing your own DrsAide tool
	Adding hints to your DrsAide tool

	Utilities
	BMPtoDLL
	REStoRXX
	REView
	REVise

	User preferences
	Related packages
	Acknowledgements
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote
	Footnote

